Next Article in Journal
Dynamics of the Almost Periodic Discrete Mackey–Glass Model
Next Article in Special Issue
Mean Values of Products of L-Functions and Bernoulli Polynomials
Previous Article in Journal
Exact Solution of Ambartsumian Delay Differential Equation and Comparison with Daftardar-Gejji and Jafari Approximate Method
Previous Article in Special Issue
Higher-Order Convolutions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi Polynomials
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some Symmetric Identities Involving the Stirling Polynomials Under the Finite Symmetric Group

1
Department of Mathematics, Sungkyunkwan University, Suwon 16419, Korea
2
Institute of Mathematics, Henan Polytechnic University, Jiaozuo 454010, China
3
School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin 300387, China
*
Author to whom correspondence should be addressed.
Mathematics 2018, 6(12), 332; https://doi.org/10.3390/math6120332
Submission received: 6 November 2018 / Revised: 6 December 2018 / Accepted: 15 December 2018 / Published: 17 December 2018
(This article belongs to the Special Issue Special Functions and Applications)

Abstract

:
In the paper, the authors present some symmetric identities involving the Stirling polynomials and higher order Bernoulli polynomials under all permutations in the finite symmetric group of degree n. These identities extend and generalize some known results.

1. Introduction

The Stirling numbers arise in a variety of analytic and combinatorial problems. They were introduced in the eighteenth century by James Stirling. There are two kinds of the Stirling numbers: the Stirling numbers of the first and second kind. Some combinatorial identities for the Stirling numbers of these two kinds are studied and collected in [1,2,3,4,5,6,7,8] and closely related references.
The Stirling numbers of second kind S ( n , k ) are the numbers of ways to partition a set of n elements into k nonempty subsets. It can be computed by
S ( n , k ) = 1 k ! i = 0 k ( 1 ) i k i ( k i ) n
and can be generated by
( e x 1 ) k k ! = n = k S ( n , k ) x n n ! , k 0 .
The Stirling polynomials S n ( x ) can be generated [4,9,10,11,12,13] by
F ( t , x ) = t 1 e t x + 1 = n = 0 S n ( x ) t n n !
and the first five Stirling polynomials S n ( x ) for 0 n 4 are
S 0 ( x ) = 1 , S 1 ( x ) = x + 1 2 , S 2 ( x ) = ( 3 x + 2 ) ( x + 1 ) 12 , S 3 ( x ) = x ( x + 1 ) 2 8 .
The Stirling polynomials S n ( x ) generalize several important sequences of numbers, including the Stirling numbers of the second kind S ( n , k ) and the Bernoulli numbers B n , appearing in combinatorics, number theory, and analysis.
In the case x = n for n N in Equation (1), we can derive
k = 0 S k ( n ) t k k ! = 1 e t t n 1 = ( 1 ) n 1 t n 1 ( e t 1 ) n 1 = ( 1 ) n 1 t n 1 ( n 1 ) ! k = n 1 S ( k , n 1 ) ( t ) k k ! = k = 0 S ( k + n 1 , n 1 ) ( n 1 ) ! k ! ( k + n 1 ) ! ( 1 ) k t k k ! = k = 0 S ( k + n 1 , n 1 ) k + n 1 k ( 1 ) k t k k ! .
Equating coefficients on the very ends of the above identity arrives at
S ( m , n ) = ( 1 ) m n m n + n k S m n ( n 1 )
for m , n N { 0 } .
It is common knowledge [14] that the Bernoulli numbers B n are generated by
t e t 1 = n = 0 B n t n n ! , | t | < 2 π .
By considering the case x = 0 in Equation (1) and the definition in Equation (3) for the Bernoulli numbers B n , we have
n = 0 S n ( 0 ) t n n ! = t 1 e t = t e t 1 = n = 0 ( 1 ) n B n t n n ! .
Comparing the coefficients on both sides of this equation results in
B n = ( 1 ) n S n ( 0 ) , n 0 .
One can also find Equations (2) and (4) in [4], p. 154.
The higher order Bernoulli numbers B n ( α ) for n 0 and α N can be generated [15,16,17] by
t e t 1 α = n = 0 B n ( α ) t n n ! , | t | < 2 π .
Combining this with Equation (1) yields the relation
S k ( n ) = ( 1 ) k B k ( n + 1 ) , k N { 0 } , n N .
In the paper [15], some new symmetric identities for the q-Bernoulli polynomials are derived from the fermionic integral on Z p . In [18,19], the method in the paper [15] is extended to the q-Euler and q-Genocchi polynomials, respectively. In [13], some symmetric identities involving the Stirling polynomials S n ( x ) are investigated. The symmetric identities of some special polynomials, such as higher order Bernoulli polynomials B n ( α ) , higher order q-Euler polynomials, degenerate generalized Bernoulli polynomials, and degenerate higher order q-Euler polynomials, have been studied by several mathematicians in [10,16,20,21,22,23] and closely related references therein.
The purpose of this paper is to investigate some interesting symmetric identities involving the Stirling polynomials S n ( x ) under the finite symmetric group S n . By specializing these identities, we can obtain some new symmetric identities involving the Stirling polynomials S n ( x ) .

2. Symmetric Identities of Stirling Polynomials

Now, we start out to state and prove our main results.
Theorem 1.
Let w 1 , w 2 , , w n N and N { 0 } . Then, the expression
I σ ( s ) = 0 ( 1 ) j σ ( s ) i σ ( 1 ) , , i σ ( s ) , j σ ( s ) , i σ ( s + 1 ) , i σ ( n ) w ^ σ ( s ) j σ ( s ) + 1 S i σ ( s ) ( x 1 ) A j σ ( s ) [ w σ ( s ) 1 ] k = 1 k s n S i σ ( k ) ( x )
is invariant under any permutation σ S n , where w ^ i = 1 w i k = 1 n w k ,
I σ ( s ) = i σ ( 1 ) + + i σ ( s ) + j σ ( s ) + i σ ( s + 1 ) + + i σ ( n ) ,
and A k ( n ) = 0 k + 1 k + + n k for k , n N { 0 } .
Proof. 
For convenience, we denote w = k = 1 n w k . Define
I = I ( w 1 , w 2 , , w n ) = t n x + ( n 1 ) 1 e w t i = 1 n 1 e w ^ i t x + 1 .
It is clear that we can rewrite I as
t 1 e w ^ 1 t x 1 e w t 1 e w ^ 1 t k = 2 n t 1 e w ^ k t x + 1 I ( 1 ) .
By applying Equations (1)–(8), we can rearrange the equality in Equation (7) as
I ( 1 ) = 1 w ^ 1 x i 1 = 0 S i 1 ( x 1 ) w ^ 1 i 1 t i 1 i 1 ! j 1 = 0 ( 1 ) j 1 A j 1 ( w 1 1 ) w ^ 1 j 1 t j 1 j 1 ! k = 2 n 1 w ^ k x + 1 i k = 0 S i k ( x ) w ^ k i k t i k i k ! = 1 w ^ 1 x + 1 w ^ 2 x + 1 w ^ n x + 1 = 0 [ i 1 + j 1 + i 2 + + i n = 0 i 1 , j 1 , i 2 , , i n ( 1 ) j 1 × w ^ 1 i 1 + j 1 + 1 w ^ 2 i 2 w ^ 3 i 3 w ^ n i n S i 1 ( x 1 ) A j 1 ( w 1 1 ) k = 2 n S i k ( x ) ] t ! .
Similarly, from Equation (7), we can also consider I as
I ( 2 ) t 1 e w ^ 1 t x + 1 t 1 e w ^ 2 t x 1 e w t 1 e w ^ 2 t k = 3 n t 1 e w ^ k t x + 1 = 1 w ^ 1 x + 1 w ^ 2 x + 1 w ^ n x + 1 = 0 [ i 1 + i 2 + j 2 + i 3 + + i n = 0 i 1 , i 2 , j 2 , i 3 , , i n ( 1 ) j 2 × w ^ 1 i 1 w ^ 2 i 2 + j 2 + 1 w ^ 3 i 3 w ^ n i n S i 1 ( x ) S i 2 ( x 1 ) A j 2 ( w 2 1 ) k = 3 n S i k ( x ) ] t ! .
Inductively, for any s { 1 , 2 , , n } , from Equation (7), we can consider I as
I ( s ) = t 1 e w ^ s t x 1 e w t 1 e w ^ s t k = 1 k s n t 1 e w ^ k t x + 1 = 1 w ^ 1 x + 1 w ^ 2 x + 1 w ^ n x + 1 = 0 [ i 1 + + i s + j s + i s + 1 + + i n = 0 i 1 , , i s , j s , i s + 1 , , i n × ( 1 ) j s w ^ 1 i 1 w ^ 2 i 2 w ^ s i s + j s + 1 w ^ n i n S i s ( x 1 ) A j s ( w s 1 ) k = 1 k s n S i k ( x ) ] t ! .
Combining the above three equalities leads to the expression
I ( σ ( s ) ) = t 1 e w ^ σ ( s ) t x 1 e w t 1 e w ^ σ ( s ) t k = 1 k s n t 1 e w ^ σ ( k ) t x + 1 = 1 w ^ σ ( 1 ) x + 1 w ^ σ ( 2 ) x + 1 w ^ σ ( n ) x + 1 = 0 [ I σ ( s ) = 0 i σ ( 1 ) , , i σ ( s ) , j σ ( s ) , i σ ( s + 1 ) , i σ ( n ) ( 1 ) j σ ( s ) × w ^ σ ( 1 ) i σ ( 1 ) w ^ σ ( 2 ) i σ ( 2 ) w ^ σ ( s ) i σ ( s ) + j σ ( s ) + 1 w ^ σ ( n ) i σ ( n ) S i σ ( s ) ( x 1 ) A j σ ( s ) [ w σ ( s ) 1 ] k = 1 k s n S i σ ( k ) ( x ) ] t !
which are invariant under any permutations σ S n . □
Combining Theorem 1 for x = 1 with the equalities in Equations (4) and (5) deduces Corollary 1 below.
Corollary 1.
Let w 1 , w 2 , , w n N and 0 . Then, the quantities
I σ ( s ) = 0 ( 1 ) j σ ( s ) i σ ( 1 ) , , i σ ( s ) , j σ ( s ) , i σ ( s + 1 ) , , i σ ( n ) w ^ σ ( s ) j σ ( s ) + 1 B i σ ( s ) A j σ ( s ) [ w σ ( s ) 1 ] k = 1 k s n B i σ ( k ) ( 2 )
are invariant under any permutation σ S n .
Replacing x by p for p N { 0 } in Theorem 1 and employing Equation (2) result in the following corollary.
Corollary 2.
Let w 1 , w 2 , , w n N and , p 0 . Then the expressions
I σ ( s ) = 0 ( 1 ) j σ ( s ) i σ ( 1 ) , , i σ ( s ) , j σ ( s ) , i σ ( s + 1 ) , i σ ( n ) w ^ σ ( s ) j σ ( s ) + 1 × S ( i σ ( s ) + p , p ) i σ ( s ) + p i σ ( s ) A j σ ( s ) [ w σ ( s ) 1 ] k = 1 k s n S ( i σ ( k ) + p 1 , p 1 ) i σ ( k ) + p 1 i σ ( k )
are invariant under any permutations σ S n .
Finally, combining Corollary 2 with Equation (4) leads to the following corollary.
Corollary 3.
Let w 1 , w 2 , , w n N and , p 0 . Then the expressions
I σ ( s ) = 0 ( 1 ) j σ ( s ) i σ ( 1 ) , , i σ ( s ) , j σ ( s ) , i σ ( s + 1 ) , i σ ( n ) w ^ σ ( s ) j σ ( s ) + 1 B i σ ( s ) ( p ) A j σ ( s ) [ w σ ( s ) 1 ] k = 1 k s n B i σ ( k ) ( p + 1 )
are invariant under any permutations σ S n .
From Theorem 1 to Corollary 3, if taking w 4 = w 5 = = w n = 1 , then we have the following corollaries.
Corollary 4.
Let w 1 , w 2 , w 3 be any positive integers, n be any non-negative integer. Then the expressions
m + + k + j = 0 n n m , , k , j ( 1 ) w 1 m + + j + 1 w 2 m + + k + 1 w 3 k + j S m ( x 1 ) A ( w 3 1 ) S k ( x ) S j ( x ) = m + + k + j = 0 n n m , , k , j ( 1 ) k w 1 m + j w 2 m + + k + 1 w 3 m + k + j + 1 S m ( x ) S ( x 1 ) A k ( w 1 1 ) S j ( x ) = m + + k + j = 0 n n m , , k , j ( 1 ) j w 1 m + k + j + 1 w 2 m + w 3 + k + j + 1 S m ( x ) S ( x ) S k ( x 1 ) A j ( w 2 1 )
and
m + + k + j = 0 n n m , , k , j ( 1 ) m + + k + j w 1 m + + j + 1 w 2 m + + k + 1 w 3 k + j B m A ( w 3 1 ) B k ( 2 ) B j ( 2 ) = m + + k + j = 0 n n m , , k , j ( 1 ) m + + k + j w 1 m + j w 2 m + + k + 1 w 3 m + k + j + 1 B m ( 2 ) B A k ( w 1 1 ) B j ( 2 ) = m + + k + j = 0 n n m , , k , j ( 1 ) m + + k + j w 1 m + k + j + 1 w 2 m + w 3 + k + j + 1 B m ( 2 ) B ( 2 ) B k A j ( w 2 1 ) .
are invariant under any permutations of w 1 , w 2 , w 3 .
Corollary 5.
For n , p N { 0 } and w 1 , w 2 , w 3 N ,the expressions
m + + k + j = 0 n n m , , k , j ( 1 ) m + + k + j w 1 m + + j + 1 w 2 m + + k + 1 w 3 k + j × S ( m + p , p ) m + p m A ( w 3 1 ) S ( k + p 1 , p 1 ) k + p 1 k S ( j + p 1 , p 1 ) j + p 1 j = m + + k + j = 0 n n m , , k , j ( 1 ) m + + k + j w 1 m + j w 2 m + + k + 1 w 3 m + k + j + 1 × S ( m + p 1 , p 1 ) m + p 1 m S ( + p , p ) + p A k ( w 1 1 ) S ( j + p 1 , p 1 ) j + p 1 j = m + + k + j = 0 n n m , , k , j ( 1 ) m + + k + j w 1 m + + j + 1 w 2 m + w 3 + k + j + 1 × S ( m + p 1 , p 1 ) m + p 1 m S ( + p 1 , ) + p 1 S ( k + p , p ) k + p k A j ( w 2 1 )
are invariant under any permutations of w 1 , w 2 , w 3 .
Corollary 6.
For n , p N { 0 } and w 1 , w 2 , w 3 N , the expressions
m + + k + j = 0 n n m , , k , j ( 1 ) m + + k + j w 1 m + + j + 1 w 2 m + + k + 1 w 3 k + j B m ( p ) A ( w 3 1 ) B k ( p + 1 ) B j ( p + 1 ) = m + + k + j = 0 n n m , , k , j ( 1 ) m + + k + j w 1 m + j w 2 m + + k + 1 w 3 m + k + j + 1 B m ( p + 1 ) B ( p ) A k ( w 1 1 ) B j ( p + 1 ) = m + + k + j = 0 n n m , , k , j ( 1 ) m + + k + j w 1 m + k + j + 1 w 2 m + w 3 + k + j + 1 B m ( p + 1 ) B ( p + 1 ) B k ( p ) A j ( w 2 1 )
are invariant under any permutations of w 1 , w 2 , w 3 .

3. Symmetric Identities via Higher Order Bernoulli Polynomials

Recall from [16] that higher order Bernoulli polynomials B n ( α ) ( x ) can be generated by
t e t 1 α e x t = n = 0 B n ( α ) ( x ) t n n ! , α N .
Now, we start out to investigate symmetric identities for the Stirling polynomials S n ( x ) under the finite symmetric group S n via higher order Bernoulli polynomials B n ( α ) ( x ) .
Theorem 2.
Let w 1 , w 2 , , w n N and 0 . Then the quantities
i = 0 w σ ( s ) 1 I σ ( s ) = 0 ( 1 ) j σ ( s ) i σ ( 1 ) , , i σ ( s ) , j σ ( s ) , i σ ( s + 1 ) , i σ ( n ) × w ^ σ ( s ) j σ ( s ) + 1 S i σ ( s ) ( x + r 1 ) B j σ ( s ) ( r ) ( i ) k = 1 k s n S i σ ( k ) ( x + r )
are invariant under any permutations σ S n , where I σ ( s ) is defined by Equation (6).
Proof. 
Define I ( r ) = I ( r ) ( w 1 , w 2 , , w n ) as
I ( r ) = t n x + n r + ( n 1 ) 1 e w t i = 1 n 1 e w ^ i t x + r + 1 .
Then we can rewrite I ( r ) as
I ( 1 ) ( r ) = t 1 e w ^ 1 t x 1 e w t 1 e w ^ 1 t t 1 e w ^ 1 t r k = 2 n t 1 e w ^ k t x + r + 1 .
Applying Equations (1) and (9) to the equality in Equation (10) gives
I ( 1 ) ( r ) = 1 w ^ 1 x + r i 1 = 0 S i 1 ( x + r 1 ) w ^ 1 i 1 t i 1 i 1 ! i = 0 w 1 1 j 1 = 0 B j 1 ( r ) ( w 1 1 ) w ^ 1 j 1 t j 1 j 1 ! k = 2 n 1 w ^ k x + r + 1 i k = 0 S i k ( x + r ) w ^ k i k t i k i k ! = 1 w ^ 1 x + r + 1 w ^ 2 x + r + 1 w ^ n x + r + 1 = 0 i = 0 w 1 1 [ i 1 + j 1 + i 2 + + i n = 0 ( 1 ) j 1 i 1 , j 1 , i 2 , , i n × w ^ 1 i 1 + j 1 + 1 w ^ 2 i 2 w ^ 3 i 3 w ^ n i n S i 1 ( x + r 1 ) B j 1 ( r ) ( i ) k = 2 n S i k ( x + r ) ] t ! .
Similarly, we can rewrite I ( r ) as
I ( 2 ) ( r ) = t 1 e w ^ 1 t x + r + 1 t 1 e w ^ 2 t x 1 e w t 1 e w ^ 2 t t 1 e w ^ 2 t r k = 3 n t 1 e w ^ k t x + r + 1 = 1 w ^ 1 x + r + 1 w ^ 2 x + r + 1 w ^ n x + r + 1 = 0 i = 0 w 2 1 [ i 1 + i 2 + j 2 + i 3 + + i n = 0 ( 1 ) j 2 i 1 , i 2 , j 2 , i 3 , , i n × w ^ 1 i 1 w ^ 2 i 2 + j 2 + 1 w ^ 3 i 3 w ^ n i n S i 1 ( x + r ) S i 2 ( x + r 1 ) B j 2 ( r ) ( i ) k = 3 n S i k ( x + r ) ] t ! .
Inductively, for any s { 1 , 2 , , n } , we can rearrange I ( r ) as
I ( s ) ( r ) = t 1 e w ^ s t x 1 e w t 1 e w ^ s t t 1 e w ^ s t r k = 1 k s n t 1 e w ^ k t x + r + 1 = 1 w ^ 1 x + r + 1 w ^ 2 x + r + 1 w ^ n x + r + 1 = 0 i = 0 w s 1 [ i 1 + i s + j s + i s + 1 + + i n = 0 ( 1 ) j s i 1 , , i s , j s , i s + 1 , i n × w ^ 1 i 1 w ^ 2 i 2 w ^ s i s + j s + 1 w ^ n i n S i s ( x + r 1 ) B j s ( r ) ( i ) k = 1 k s n S i k ( x + r ) ] t ! .
Combining the equalities in Equations (11)–(13), we can see that the expressions
I ( σ ( s ) ) ( r ) = t 1 e w ^ σ ( s ) t x 1 e w t 1 e w ^ σ ( s ) t t 1 e w ^ σ ( s ) t r k = 1 k s n t 1 e w ^ σ ( k ) t x + r + 1 = 1 w ^ σ ( 1 ) x + r + 1 w ^ σ ( 2 ) x + r + 1 w ^ σ ( n ) x + r + 1 = 0 i = 0 w σ ( s ) 1 [ I σ ( s ) = 0 ( 1 ) j σ ( s ) i σ ( 1 ) , , i σ ( s ) , j σ ( s ) , i σ ( s + 1 ) , i σ ( n ) × w ^ σ ( 1 ) i σ ( 1 ) w ^ σ ( 2 ) i σ ( 2 ) w ^ σ ( s ) i σ ( s ) + j σ ( s ) + 1 w ^ σ ( n ) i σ ( n ) S i σ ( s ) ( x + r 1 ) B j σ ( s ) ( r ) ( i ) k = 1 k s n S i σ ( k ) ( x + r ) ] t !
are invariant under any permutations σ S n . □
From Theorem 2, we can derive the following interesting results in a simple way.
Combining Theorem 2 for x = 1 with Equations (4) and (5) yields the following corollary.
Corollary 7.
Let w 1 , w 2 , , w n N and 0 . Then the expressions
i = 0 w σ ( s ) 1 I σ ( s ) = 0 ( 1 ) j σ ( s ) i σ ( 1 ) , , i σ ( s ) , j σ ( s ) , i σ ( s + 1 ) , i σ ( n ) w ^ σ ( s ) j σ ( s ) + 1 B i σ ( s ) ( r + 1 ) B j σ ( s ) ( r ) ( i ) k = 1 k s n B k ( r + 2 )
are invariant under all permutations σ S n .
Replacing x by p for p N { 0 } in Theorem 2 and using the equality in Equation (2) arrive at the following corollary.
Corollary 8.
Let w 1 , w 2 , , w n N and , p 0 . Then the expressions
i = 0 w σ ( s ) 1 [ I σ ( s ) = 0 ( 1 ) j σ ( s ) i σ ( 1 ) , , i σ ( s ) , j σ ( s ) , i σ ( s + 1 ) , i σ ( n ) × w ^ σ ( s ) j σ ( s ) + 1 S ( i σ ( s ) + p , p ) i σ ( s ) + p i σ ( s ) B j σ ( s ) ( r ) ( i ) k = 1 k s n S ( i σ ( k ) + p 1 , p 1 ) i σ ( k ) + p 1 i σ ( k ) ]
are invariant under all permutations σ S n .
Finally, combining Corollary 8 with Equation (4) leads to the following corollary.
Corollary 9.
For w 1 , w 2 , , w n N and , p , r N { 0 } such that p r , the quantities
i = 0 w σ ( s ) 1 I σ ( s ) = 0 ( 1 ) j σ ( s ) i σ ( 1 ) , , i σ ( s ) , j σ ( s ) , i σ ( s + 1 ) , i σ ( n ) w ^ σ ( s ) j σ ( s ) + 1 B i σ ( s ) ( p + r ) B j σ ( s ) ( r ) k = 1 , k s n B i σ ( k ) ( p + x + 1 )
are invariant under all permutations σ S n .
Corollary 10.
For n , r N { 0 } and w 1 , w 2 , w 3 N , the quantities
i = 0 w 1 1 m + + k + j = 0 n n m , , k , j ( 1 ) w 1 m + j w 2 m + + k + 1 w 3 + k + j + 1 S m ( x + r ) S ( x + r 1 ) B k ( r ) ( i ) S j ( x + r ) = i = 0 w 2 1 m + + k + j = 0 n n m , , k , j ( 1 ) j w 1 m + k + j + 1 w 2 m + w 3 m + k + j + 1 S m ( x + r ) S ( x + r ) S k ( x + r 1 ) B j ( r ) ( i ) = i = 0 w 3 1 m + + k + j = 0 n n m , , k , j ( 1 ) w 1 m + + j + 1 w 2 m + + k + 1 w 3 k + j S m ( x + r 1 ) B ( r ) ( i ) S k ( x + r ) S j ( x + r )
are invariant under all permutations σ S n .
Corollary 11.
For n , r N { 0 } and w 1 , w 2 , w 3 N , the quantities
i = 0 w 1 1 m + + k + j = 0 n n m , , k , j ( 1 ) m + + k + j w 1 m + j w 2 m + + k + 1 w 3 + k + j + 1 B m ( r + 2 ) B l ( r + 1 ) B k ( r ) ( i ) B j ( r + 2 ) = i = 0 w 2 1 m + + k + j = 0 n n m , , k , j ( 1 ) m + + k + j w 1 m + k + j + 1 w 2 m + w 3 + k + j + 1 B m ( r + 2 ) B l ( r + 2 ) B k ( r + 1 ) B j ( r ) ( i ) = i = 0 w 3 1 m + + k + j = 0 n n m , , k , j ( 1 ) m + + k + j w 1 m + + j + 1 w 2 m + + k + 1 w 3 k + j B m ( r + 1 ) B ( r ) ( i ) B k ( r + 2 ) B j ( r + 2 )
are invariant under all permutations σ S n .
Corollary 12.
For n , p , r N { 0 } such that p r and w 1 , w 2 , w 3 N , the quantities
i = 0 w 1 1 m + + k + j = 0 n n m , , k , j ( 1 ) m + + k + j w 1 m + j w 2 m + + k + 1 w 3 + k + j + 1 m + p r 1 m 1 + p r 1 × j + p r 1 j 1 S ( m + p r 1 , p r 1 ) S ( + p r , p r ) B k ( r ) ( i ) S ( j + p r 1 , j r 1 ) = i = 0 w 2 1 m + + k + j = 0 n n m , , k , j ( 1 ) m + + k + j w 1 m + k + j + 1 w 2 m + w 3 + k + j + 1 m + p r 1 m 1 × + p r 1 1 + p r j 1 S ( m + p r 1 , p r 1 ) × S ( + p r 1 , p r 1 ) S ( j + p r , p r ) B j ( r ) ( i ) = i = 0 w 3 1 m + + k + j = 0 n n m , , k , j ( 1 ) m + + k + j w 1 m + + j + 1 w 2 m + + k + 1 w 3 k + j × m + p r m 1 k + p r 1 k 1 j + p r 1 j 1 × S ( m + p r , p r ) B ( r ) ( i ) S ( k + p r 1 , p r 1 ) S ( j + p r 1 , p r 1 )
are invariant under all permutations σ S n .
Corollary 13.
For n , p , r N { 0 } such that p r and w 1 , w 2 , w 3 N , the quantities
i = 0 w 1 1 m + + k + j = 0 n n m , , k , j ( 1 ) m + + k + j w 1 m + j w 2 m + + k + 1 w 3 + k + j + 1 B m ( p + x + 1 ) B l ( p + r ) B k ( r ) ( i ) B j ( p + x + 1 ) = i = 0 w 2 1 m + + k + j = 0 n n m , , k , j ( 1 ) m + + k + j w 1 m + k + j + 1 w 2 m + w 3 + k + j + 1 B m ( p + x + 1 ) B l ( p + x + 1 ) B k ( p + r ) B j ( r ) ( i ) = i = 0 w 3 1 m + + k + j = 0 n n m , , k , j ( 1 ) m + + k + j w 1 m + + j + 1 w 2 m + + k + 1 w 3 k + j B m ( p + r ) B ( r ) ( i ) B k ( p + x + 1 ) B j ( p + x + 1 )
are invariant under all permutations σ S n .
Remark 1.
In view of Corollaries 10–13, by specializing w 3 = 1 or w 2 = w 3 = 1 , we can obtain many interesting symmetric identities for Stirling polynomials S n ( x ) .

Author Contributions

The authors contributed equally to this work. The authors read and approved the final manuscript.

Funding

The first author was supported by the National Research Foundation of Korea (NRF) with Grant Numbers NRF-2016R1A5A1008055 and NRF-2018R1D1A1B07041846.

Acknowledgments

The authors are thankful to the anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Merca, M. A convolution for complete and elementary symmetric functions. Aequ. Math. 2013, 86, 217–229. [Google Scholar] [CrossRef]
  2. Qi, F. Diagonal recurrence relations, inequalities, and monotonicity related to the Stirling numbers of the second kind. Math. Inequal. Appl. 2016, 19, 313–323. [Google Scholar] [CrossRef]
  3. Qi, F. Diagonal recurrence relations for the Stirling numbers of the first kind. Contrib. Discret. Math. 2016, 11, 22–30. Available online: http://hdl.handle.net/10515/sy5wh2dx6 (accessed on 5 November 2018). [CrossRef]
  4. Qi, F.; Guo, B.-N. A closed form for the Stirling polynomials in terms of the Stirling numbers. Tbil. Math. J. 2017, 10, 153–158. [Google Scholar] [CrossRef] [Green Version]
  5. Qi, F.; Guo, B.-N. A diagonal recurrence relation for the Stirling numbers of the first kind. Appl. Anal. Discret. Math. 2018, 12, 153–165. [Google Scholar] [CrossRef]
  6. Quaintance, J.; Gould, H.W. Combinatorial Identities for Stirling Numbers; The Unpublished Notes of H. W. Gould with a Foreword by George E. Andrews; World Scientific Publishing Co., Pte. Ltd.: Singapore, 2016. [Google Scholar]
  7. Schreiber, A. Multivariate Stirling polynomials of the first and second kind. Discret. Math. 2015, 338, 2462–2484. [Google Scholar] [CrossRef] [Green Version]
  8. Simsek, Y. Identities associated with generalized Stirling type numbers and Eulerian type polynomials. Math. Comput. Appl. 2013, 18, 251–263. [Google Scholar] [CrossRef]
  9. Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; Based on Notes Left by Harry Bateman; Reprint of the 1955 Original; Robert E. Krieger Publishing Co., Inc.: Melbourne, FL, USA, 1981; Volume III. [Google Scholar]
  10. Gessel, I.; Stanley, R.P. Stirling polynomials. J. Comb. Theory Ser. A 1978, 24, 24–33. [Google Scholar] [CrossRef]
  11. Kang, J.Y.; Ryoo, C.S. A research on the some properties and distribution of zeros for Stirling polynomials. J. Nonlinear Sci. Appl. 2016, 9, 1735–1747. [Google Scholar] [CrossRef]
  12. Roman, S. The Umbral Calculus; Pure and Applied Mathematics; Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers]: New York, NY, USA, 1984; Volume 111. [Google Scholar]
  13. Seo, J.J.; Kim, T. Some identities of symmetry for Stirling polynomials. Adv. Stud. Contemp. Math. 2016, 26, 255–261. [Google Scholar]
  14. Qi, F.; Chapman, R.J. Two closed forms for the Bernoulli polynomials. J. Number Theory 2016, 159, 89–100. [Google Scholar] [CrossRef] [Green Version]
  15. Dolgy, D.V.; Kim, T.; Rim, S.-H.; Lee, S.H. Symmetry identities for the generalized higher-order q-Bernoulli polynomials under S3 arising from p-adic Volkenborn integral on ℤp. Proc. Jangjeon Math. Soc. 2014, 17, 645–650. [Google Scholar]
  16. Kim, D.S.; Lee, N.; Na, J.; Park, K.H. Abundant symmetry for higher-order Bernoulli polynomials (I). Adv. Stud. Contemp. Math. 2013, 23, 461–482. [Google Scholar]
  17. Lim, D.; Do, Y. Some identities of Barnes-type special polynomials. Adv. Differ. Equ. 2015, 2015. [Google Scholar] [CrossRef]
  18. Duran, U.; Acikgoz, M.; Esi, A.; Araci, S. Some new symmetric identities involving q-Genocchi polynomials under S4. J. Math. Anal. 2015, 6, 22–31. [Google Scholar]
  19. Kim, D.S.; Kim, T. Identities of symmetry for generalized q-Euler polynomials arising from multivariate fermionic p-adic integral on ℤp. Proc. Jangjeon Math. Soc. 2014, 17, 519–525. [Google Scholar]
  20. Kim, T. Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on ℤp. Russ. J. Math. Phys. 2009, 16, 484–491. [Google Scholar] [CrossRef]
  21. Kim, T.; Dolgy, D.V.; Kim, D.S. Symmetric identities for degenerate generalized Bernoulli polynomials. J. Nonlinear Sci. Appl. 2016, 9, 677–683. [Google Scholar] [CrossRef] [Green Version]
  22. Kim, D.S.; Kim, T. Symmetric identities of higher-order degenerate q-Euler polynomials. J. Nonlinear Sci. Appl. 2016, 9, 443–451. [Google Scholar] [CrossRef]
  23. Kim, D.S.; Kim, T.; Lee, S.-H.; Seo, J.-J. Identities of symmetry for higher-order q-Euler polynomials. Proc. Jangjeon Math. Soc. 2014, 17, 161–167. [Google Scholar]

Share and Cite

MDPI and ACS Style

Lim, D.; Qi, F. Some Symmetric Identities Involving the Stirling Polynomials Under the Finite Symmetric Group. Mathematics 2018, 6, 332. https://doi.org/10.3390/math6120332

AMA Style

Lim D, Qi F. Some Symmetric Identities Involving the Stirling Polynomials Under the Finite Symmetric Group. Mathematics. 2018; 6(12):332. https://doi.org/10.3390/math6120332

Chicago/Turabian Style

Lim, Dongkyu, and Feng Qi. 2018. "Some Symmetric Identities Involving the Stirling Polynomials Under the Finite Symmetric Group" Mathematics 6, no. 12: 332. https://doi.org/10.3390/math6120332

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop