Some Symmetric Identities Involving the Stirling Polynomials Under the Finite Symmetric Group
Abstract
:1. Introduction
2. Symmetric Identities of Stirling Polynomials
3. Symmetric Identities via Higher Order Bernoulli Polynomials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Merca, M. A convolution for complete and elementary symmetric functions. Aequ. Math. 2013, 86, 217–229. [Google Scholar] [CrossRef]
- Qi, F. Diagonal recurrence relations, inequalities, and monotonicity related to the Stirling numbers of the second kind. Math. Inequal. Appl. 2016, 19, 313–323. [Google Scholar] [CrossRef]
- Qi, F. Diagonal recurrence relations for the Stirling numbers of the first kind. Contrib. Discret. Math. 2016, 11, 22–30. Available online: http://hdl.handle.net/10515/sy5wh2dx6 (accessed on 5 November 2018). [CrossRef]
- Qi, F.; Guo, B.-N. A closed form for the Stirling polynomials in terms of the Stirling numbers. Tbil. Math. J. 2017, 10, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Guo, B.-N. A diagonal recurrence relation for the Stirling numbers of the first kind. Appl. Anal. Discret. Math. 2018, 12, 153–165. [Google Scholar] [CrossRef]
- Quaintance, J.; Gould, H.W. Combinatorial Identities for Stirling Numbers; The Unpublished Notes of H. W. Gould with a Foreword by George E. Andrews; World Scientific Publishing Co., Pte. Ltd.: Singapore, 2016. [Google Scholar]
- Schreiber, A. Multivariate Stirling polynomials of the first and second kind. Discret. Math. 2015, 338, 2462–2484. [Google Scholar] [CrossRef] [Green Version]
- Simsek, Y. Identities associated with generalized Stirling type numbers and Eulerian type polynomials. Math. Comput. Appl. 2013, 18, 251–263. [Google Scholar] [CrossRef]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; Based on Notes Left by Harry Bateman; Reprint of the 1955 Original; Robert E. Krieger Publishing Co., Inc.: Melbourne, FL, USA, 1981; Volume III. [Google Scholar]
- Gessel, I.; Stanley, R.P. Stirling polynomials. J. Comb. Theory Ser. A 1978, 24, 24–33. [Google Scholar] [CrossRef]
- Kang, J.Y.; Ryoo, C.S. A research on the some properties and distribution of zeros for Stirling polynomials. J. Nonlinear Sci. Appl. 2016, 9, 1735–1747. [Google Scholar] [CrossRef]
- Roman, S. The Umbral Calculus; Pure and Applied Mathematics; Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers]: New York, NY, USA, 1984; Volume 111. [Google Scholar]
- Seo, J.J.; Kim, T. Some identities of symmetry for Stirling polynomials. Adv. Stud. Contemp. Math. 2016, 26, 255–261. [Google Scholar]
- Qi, F.; Chapman, R.J. Two closed forms for the Bernoulli polynomials. J. Number Theory 2016, 159, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Dolgy, D.V.; Kim, T.; Rim, S.-H.; Lee, S.H. Symmetry identities for the generalized higher-order q-Bernoulli polynomials under S3 arising from p-adic Volkenborn integral on ℤp. Proc. Jangjeon Math. Soc. 2014, 17, 645–650. [Google Scholar]
- Kim, D.S.; Lee, N.; Na, J.; Park, K.H. Abundant symmetry for higher-order Bernoulli polynomials (I). Adv. Stud. Contemp. Math. 2013, 23, 461–482. [Google Scholar]
- Lim, D.; Do, Y. Some identities of Barnes-type special polynomials. Adv. Differ. Equ. 2015, 2015. [Google Scholar] [CrossRef]
- Duran, U.; Acikgoz, M.; Esi, A.; Araci, S. Some new symmetric identities involving q-Genocchi polynomials under S4. J. Math. Anal. 2015, 6, 22–31. [Google Scholar]
- Kim, D.S.; Kim, T. Identities of symmetry for generalized q-Euler polynomials arising from multivariate fermionic p-adic integral on ℤp. Proc. Jangjeon Math. Soc. 2014, 17, 519–525. [Google Scholar]
- Kim, T. Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on ℤp. Russ. J. Math. Phys. 2009, 16, 484–491. [Google Scholar] [CrossRef]
- Kim, T.; Dolgy, D.V.; Kim, D.S. Symmetric identities for degenerate generalized Bernoulli polynomials. J. Nonlinear Sci. Appl. 2016, 9, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Kim, T. Symmetric identities of higher-order degenerate q-Euler polynomials. J. Nonlinear Sci. Appl. 2016, 9, 443–451. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T.; Lee, S.-H.; Seo, J.-J. Identities of symmetry for higher-order q-Euler polynomials. Proc. Jangjeon Math. Soc. 2014, 17, 161–167. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, D.; Qi, F. Some Symmetric Identities Involving the Stirling Polynomials Under the Finite Symmetric Group. Mathematics 2018, 6, 332. https://doi.org/10.3390/math6120332
Lim D, Qi F. Some Symmetric Identities Involving the Stirling Polynomials Under the Finite Symmetric Group. Mathematics. 2018; 6(12):332. https://doi.org/10.3390/math6120332
Chicago/Turabian StyleLim, Dongkyu, and Feng Qi. 2018. "Some Symmetric Identities Involving the Stirling Polynomials Under the Finite Symmetric Group" Mathematics 6, no. 12: 332. https://doi.org/10.3390/math6120332
APA StyleLim, D., & Qi, F. (2018). Some Symmetric Identities Involving the Stirling Polynomials Under the Finite Symmetric Group. Mathematics, 6(12), 332. https://doi.org/10.3390/math6120332