Complex Symmetric Formulation of Maxwell Equations for Fields and Potentials
Abstract
:1. Introduction
2. Compact Complex Representation of Maxwell Equations
3. Applications
3.1. Identities
- -
- The 4-operator acts on the gauge transformation 4-vector and vanishes:
- -
- The action of the 4-E/M-operator on ,
3.2. Wave Equations
3.3. Gauge Transformations
3.4. Symmetric Complex Maxwell Equations for Potentials
3.5. Energy–Momentum
4. Conclusions
- -
- Definitions:
- -
- Maxwell equations:
- -
- Potential representation:
- (i)
- Continuity equation: Action of on Equation (42):
- (ii)
- Wave equations: Action of on Equation (42):
- (iii)
- Maxwell equations for potentials: Action of on in Equation (43):
- (iv)
- Gauge transformation: Action of in Equation (43) on :
- (v)
- 4-momentum (energy and momentum) of electromagnetic field:
5. What’s Next
Acknowledgments
Conflicts of Interest
References
- Bialynicki-Birula, I. Photon Wave Function. Prog. Opt. 1996, 36, 245–294. [Google Scholar]
- Aste, A. Complex representation theory of the electromagnetic field. J. Geom. Symmetry Phys. 2012, 28, 47–58. [Google Scholar]
- Kulyabov, D.S.; Korolkova, A.V.; Sevastianov, L.A. Spinor representation of Maxwell’s equations. J. Phys. Conf. Ser. 2017, 788, 012025. [Google Scholar] [CrossRef]
- Fushchich, W.I.; Nikitin, A.G. Symmetries of Maxwell’s Equations, 2nd ed.; D. Reidel Publishing Company: Dordrecht, The Netherlands; Boston, MA, USA; Lancaster, Lancashire; Tokyo, Japan, 1987. [Google Scholar]
- Red’kov, V.M.; Tokarevskaya, N.G.; Spix, G.J. Majorana–Oppenheimer Approach to Maxwell Electrodynamics. Part I. Minkowski Space. Adv. Appl. Clifford Algebras 2012, 22, 1129–1149. [Google Scholar] [CrossRef]
- Varlamov, V.V. Maxwell field on the Poincaré group. Int. J. Mod. Phys. A 2005, 20, 4095. [Google Scholar] [CrossRef]
- Helmstetter, J.; Micali, A. About the Structure of Meson Algebras. Adv. Appl. Clifford Algebras 2010, 20, 617–629. [Google Scholar] [CrossRef]
- Khan, S.A. An Exact Matrix Representation of Maxwell’s Equations. Phys. Scr. 2005, 71, 440. [Google Scholar] [CrossRef]
- Laporte, O.; Uhlenbeck, G.E. Application of Spinor Analysis to the Maxwell and Dirac Equations. Phys. Rev. 1931, 37, 1380. [Google Scholar] [CrossRef]
- Torres-Silva, H. Chiral Maxwell’s Equations as Two Spinor System: Dirac and Majorana Neutrino. J. Electromag. Anal. Appl. 2013, 5, 264–270. [Google Scholar] [CrossRef]
- Gsponer, A. On the “Equivalence” of the Maxwell and Dirac Equations. Int. J. Theor. Phys. 2002, 41, 689–694. [Google Scholar] [CrossRef]
- Spichak, S. Invariance of Maxwell’s Equations under Nonlinear Representations of Poincaré Algebra. Proc. Inst. Math. NAS Ukraine 2004, 50, 961–964. [Google Scholar]
- Epstein, C.L.; Greengard, L. Debye Sources and the Numerical Solution of the Time Harmonic Maxwell Equations. arXiv, 2008; arXiv:0808.3369v2. [Google Scholar]
- Epstein, C.L.; Greengard, L.; O’Neil, M. Debye Sources and the Numerical Solution of the Time Harmonic Maxwell Equations II. arXiv, 2011; arXiv:1105.3217v1. [Google Scholar] [CrossRef]
- Gindikin, S.G.; Khenkin, G.M.; Steklov, V.A. Complex integral geometry and Penrose’s representation of the solutions of Maxwell’s equations. Teoreticheskaya i Matematicheskaya Fizika 1980, 43, 32–38. [Google Scholar] [CrossRef]
- Penrose, R.; Rindler, W. Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Stickler, D.C. Integral representation for Maxwell’s equations with arbitrary time dependence. Proc. Inst. Electr. Eng. 1967, 114, 169–171. [Google Scholar] [CrossRef]
- Hailer, K. Maxwell’s equations in the multipolar representation. Phys. Rev. A 1982, 26, 1796–1797. [Google Scholar] [CrossRef]
- Bogolubov, N.N., Jr.; Prykarpatski, A.K.; Blackmore, D. Maxwell–Lorentz Electrodynamics Revisited via the Lagrangian Formalism and Feynman Proper Time Paradigm. Mathematics 2015, 3, 190–257. [Google Scholar] [CrossRef] [Green Version]
- Rajantie, A. Magnetic monopoles in field theory and cosmology. Philos. Trans. R. Soc. B 2012, 370, 5705–5717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minkowski, H. Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern (Translation: The Fundamental Equations for Electromagnetic Processes in Moving Bodies); Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse; DigiZeitschriften: Göttingen, Germany, 1907–1908; pp. 53–111.
- Davenport, C.M. An Extension of the Complex Calculus to Four Real Dimensions, with an Application to Special Relativity (M.S.); University of Tennessee: Knoxville, TN, USA, 1978. [Google Scholar]
- Livadiotis, G. Approach to general methods for fitting and their sensitivity. Physica A 2007, 375, 518–536. [Google Scholar] [CrossRef]
- Livadiotis, G. Chi-p distribution: Characterization of the goodness of the fitting using Lp norms. J. Stat. Distrib. Appl. 2014, 1, 4. [Google Scholar] [CrossRef]
- Wan, A.T.S.; Laforest, M. Nonlinear Maxwell Equations in Inhomogeneous Media. arXiv, 2016; arXiv:1605.06532. [Google Scholar]
- Hobson, M.P.; Efstathiou, G.P.; Lasenby, A.N. General Relativity: An Introduction for Physicists; Cambridge University Press: Cambridge, UK, 2006; pp. 490–491. [Google Scholar]
- Ryder, L.H. Introduction to General Relativity; Cambridge University Press: Cambridge, UK, 2009; pp. 200–207. [Google Scholar]
- Carneiro, S. The large numbers hypothesis and quantum mechanics. Found. Phys. Lett. 1998, 11, 95. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J. Evidence of large scale phase space quantization in plasmas. Entropy 2013, 15, 1118–1132. [Google Scholar] [CrossRef]
- Wan, A.T.S.; Laforest, M. A posteriori error estimation for the p-curl problem. arXiv, 2016; arXiv:1605.06532. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Livadiotis, G. Complex Symmetric Formulation of Maxwell Equations for Fields and Potentials. Mathematics 2018, 6, 114. https://doi.org/10.3390/math6070114
Livadiotis G. Complex Symmetric Formulation of Maxwell Equations for Fields and Potentials. Mathematics. 2018; 6(7):114. https://doi.org/10.3390/math6070114
Chicago/Turabian StyleLivadiotis, George. 2018. "Complex Symmetric Formulation of Maxwell Equations for Fields and Potentials" Mathematics 6, no. 7: 114. https://doi.org/10.3390/math6070114
APA StyleLivadiotis, G. (2018). Complex Symmetric Formulation of Maxwell Equations for Fields and Potentials. Mathematics, 6(7), 114. https://doi.org/10.3390/math6070114