Boundary Value Problem of the Operator ⊕k Related to the Biharmonic Operator and the Diamond Operator
Abstract
:1. Introduction
2. Preliminaries
3. Results
3.1. Example 1
3.2. Example 2 (Potential on Sphere with Dirichlet Boundary)
3.3. Remark
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BVP | Boundary value problem |
References
- Pinsky, M.A. Partial Ditterential Equations and Boundary Value Problems with Applications; McGraw-Hill, Inc.: New York, NY, USA, 1991; p. 144. [Google Scholar]
- McOwen, R.C. Partial Ditterential Equations Method and Applications; Pearson Education, Inc.: Cranbury, NJ, USA, 2003; p. 105. [Google Scholar]
- Ozisik, M.N. Heat Conduction; John Wiley & Sons, Inc.: New York, NY, USA, 1993; pp. 7–17. [Google Scholar]
- Haberman, R. Applied Partial Ditterential Equations with Fourier Series and Boundary Value Problems; Pearson Education, Inc.: Cranbury, NJ, USA, 2004; p. 170. [Google Scholar]
- Gunzburger, M.; Lehoucq, R.B. A nonlocal vector calculus with application to nonlocal boundary value problems. Multiscale Model. Simul. 2010, 8, 1581–1598. [Google Scholar] [CrossRef]
- Yosra, H.; Fadili, J.; Elmoataz, A. Nonlocal p-Laplacian evolution problems on graphs. SIAM J. Numer. Anal. 2018, 56, 1064–1090. [Google Scholar]
- Papakhao, J.; Nonlaopon, K. On the general solution of the operator related to the ultrahyperbolic operator. Appl. Math. Sci. 2011, 5, 2629–2638. [Google Scholar]
- Liangprom, A.; Nonlaopon, K. On the convolution equation related to the diamond Klein-Gordon operator. Abstr. Appl. Anal. 2011, 2011, 908491. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Y. The lower bounds of the first eigenvalues for the biharmonic operator on manifolds. J. Inequal. Appl. 2016, 2016, 5. [Google Scholar] [CrossRef]
- Choudhury, A.P.; Heck, H. Stability of the inverse boundary value problem for the biharmonic operator: Logarithmic estimates. J. Inverse Ill-Posed Probl. 2017, 25, 251–263. [Google Scholar] [CrossRef]
- John, F. Partial Differential Equations; Springer: New York, NY, USA, 1982; pp. 94–101. [Google Scholar]
- Bunpog, C. Cauchy problem of the diamond operator iterated k-times. Int. J. Math. Anal. 2013, 7, 2161–2170. [Google Scholar] [CrossRef]
- Kananthai, A. On the solution of the n-dimensional diamond operator. Appl. Math. Comput. 1997, 88, 27–37. [Google Scholar] [CrossRef]
- Trione, S.E. On the solutions of the causal and anticausal n-dimensional diamond operator. Integral Transforms Spec. Funct. 2002, 13, 49–57. [Google Scholar] [CrossRef]
- Bupasiri, S.; Nonlaopon, K. On the solution of the n-dimensional operator related to the diamond operater. FJMS 2010, 45, 69–80. [Google Scholar]
- Kananthai, A.; Suantai, S. On the convolution product of the distributional kernel Kα,β,γ,ν. IJMMS 2003, 2003, 153–158. [Google Scholar]
- Kananthai, A.; Suantai, S. On the inversion of the kernel Kα,β,γ,ν, related to the operator ⊕k. Indian J. Pure Appl. Math. 2003, 34, 1419–1429. [Google Scholar]
- Kananthai, A.; Suantai, S.; Longani, V. On the operator ⊕k related to the wave equation and Laplacian. Appl. Math. Comput. 2002, 132, 219–229. [Google Scholar] [CrossRef]
- Tariboon, J.; Kananthai, A. On the Green function of the (⊕ + m2)k operator. Integral Transforms Spec. Funct. 2007, 18, 297–304. [Google Scholar] [CrossRef]
- Satsanit, W. Green function and Fourier transform for o-plus operators. Electron. J. Differ. Equ. 2010, 2010, 1–14. [Google Scholar]
- Riesz, M. Integrale de Riemann-Liouville et le probleme de Cauchy. Acta Math. 1949, 81, 1–223. [Google Scholar] [CrossRef]
- Nozaki, Y. On Riemann-Liouville integral of ultra-hyperbolic type. Kodai Math. Semin. Rep. 1964, 6, 69–87. [Google Scholar] [CrossRef]
- Trione, S.E. On Marcel Riesz’s Ultra-hyperbolic kernel. Stud. Appl. Math. 1988, 6, 185–191. [Google Scholar] [CrossRef]
- Zemanian, A.H. Distribution Theory and Transform Analysis; Mc-Graw Hill: New York, NY, USA, 1964; p. 102. [Google Scholar]
- Bunpog, C. Distribution solutions of some PDEs related to the wave equation and the diamond operator. Appl. Math. Sci. 2013, 7, 5515–5524. [Google Scholar] [CrossRef]
- Treves, F. Basic Linear Partial Differential Equations; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Stakgold, I. Boundary Value Problems of Mathematical Physics; The Macmillan Company: New York, NY, USA, 1968. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunpog, C. Boundary Value Problem of the Operator ⊕k Related to the Biharmonic Operator and the Diamond Operator. Mathematics 2018, 6, 115. https://doi.org/10.3390/math6070115
Bunpog C. Boundary Value Problem of the Operator ⊕k Related to the Biharmonic Operator and the Diamond Operator. Mathematics. 2018; 6(7):115. https://doi.org/10.3390/math6070115
Chicago/Turabian StyleBunpog, Chalermpon. 2018. "Boundary Value Problem of the Operator ⊕k Related to the Biharmonic Operator and the Diamond Operator" Mathematics 6, no. 7: 115. https://doi.org/10.3390/math6070115
APA StyleBunpog, C. (2018). Boundary Value Problem of the Operator ⊕k Related to the Biharmonic Operator and the Diamond Operator. Mathematics, 6(7), 115. https://doi.org/10.3390/math6070115