Some Identities on Degenerate Bernstein and Degenerate Euler Polynomials
Abstract
:1. Introduction
2. Degenerate Bernstein Polynomials and Operators
3. Degenerate Euler Polynomials Associated with Degenerate Bernstein Polynomials
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kurt, V. Some relation between the Bernstein polynomials and second kind Bernoulli polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2013, 23, 43–48. [Google Scholar]
- Kim, T. Identities on the weighted q–Euler numbers and q-Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2012, 22, 7–12. [Google Scholar] [CrossRef]
- Kim, T. A note on q–Bernstein polynomials. Russ. J. Math. Phys. 2011, 18, 73–82. [Google Scholar] [CrossRef]
- Kim, T. A study on the q–Euler numbers and the fermionic q–integral of the product of several type q–Bernstein polynomials on ℤp. Adv. Stud. Contemp. Math. (Kyungshang) 2013, 23, 5–11. [Google Scholar]
- Kim, T.; Bayad, A.; Kim, Y.H. A study on the p–adic q–integral representation on ℤp associated with the weighted q–Bernstein and q-Bernoulli polynomials. J. Inequal. Appl. 2011, 2011, 513821. [Google Scholar] [CrossRef]
- Kim, T.; Choi, J.; Kim, Y.-H. On the k–dimensional generalization of q–Bernstein polynomials. Proc. Jangjeon Math. Soc. 2011, 14, 199–207. [Google Scholar]
- Kim, T.; Choi, J.; Kim, Y.H. Some identities on the q–Bernstein polynomials, q–Stirling numbers and q–Bernoulli numbers. Adv. Stud. Contemp. Math. (Kyungshang) 2010, 20, 335–341. [Google Scholar]
- Kim, T.; Kim, D.S. Degenerate Bernstein Polynomials. RACSAM 2018. [Google Scholar] [CrossRef]
- Kim, T.; Lee, B.; Choi, J.; Kim, Y.H.; Rim, S.H. On the q–Euler numbers and weighted q–Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2011, 21, 13–18. [Google Scholar]
- Rim, S.-H.; Joung, J.; Jin, J.-H.; Lee, S.-J. A note on the weighted Carlitz’s type q=Euler numbers and q-Bernstein polynomials. Proc. Jangjeon Math. Soc. 2012, 15, 195–201. [Google Scholar]
- Simsek, Y. Identities and relations related to combinatorial numbers and polynomials. Proc. Jangjeon Math. Soc. 2017, 20, 127–135. [Google Scholar]
- Siddiqui, M.A.; Agarwal, R.R.; Gupta, N. On a class of modified new Bernstein operators. Adv. Stud. Contemp. Math. (Kyungshang) 2014, 24, 97–107. [Google Scholar]
- Costabile, F.; Gualtieri, M.; Serra, S. Asymptotic expansion and extrapolation for Bernstein polynomials with applications. BIT Numer. Math. 1996, 36, 676–687. [Google Scholar] [CrossRef]
- Khosravian, H.; Dehghan, M.; Eslahchi, M.R. A new approach to improve the order of approximation of the Bernstein operators: Theory and applications. Numer. Algorithms 2018, 77, 111–150. [Google Scholar] [CrossRef]
- Carlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. 1979, 15, 51–88. [Google Scholar]
- Carlitz, L. A degenerate Staudt-Clausen theorem. Arch. Math. 1956, 7, 28–33. [Google Scholar] [CrossRef]
- Bayad, A.; Kim, T.; Lee, B.; Rim, S.-H. Some identities on Bernstein polynomials associated with q-Euler polynomials. Abstr. Appl. Anal. 2011, 2011, 294715. [Google Scholar] [CrossRef]
- Bernstein, S. Demonstration du theoreme de Weierstrass basee sur le calcul des probabilites. Commun. Soc. Math. Kharkow 1912, 13, 1–2. [Google Scholar]
- Kim, T.; Kim, D.S. Identities for degenerate Bernoulli polynomials and Korobov polynomials of the first kind. Sci. China Math. 2018. [Google Scholar] [CrossRef]
- Araci, S.; Acikgoz, M. A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. 2012, 22, 399–406. [Google Scholar]
- Ryoo, C.S. Some identities of the twisted q-Euler numbers and polynomials associated with q-Bernstein polynomials. Proc. Jangjeon Math. Soc. 2011, 14, 239–248. [Google Scholar]
- Bayad, A.; Kim, T. Identities involving values of Bernstein, q–Bernoulli, and q–Euler polynomials. Russ. J. Math. Phys. 2011, 18, 133–143. [Google Scholar] [CrossRef]
- Kim, T. Some identities on the q-integral representation of the product of several q-Bernstein-type polynomials. Abstr. Appl. Anal. 2011, 2011, 634675. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. A note on degenerate Eulerian numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2017, 27, 431–440. [Google Scholar]
- Khan, W.A.; Ahmad, M. Partially degenerate poly-Bernoulli polynomials associated with Hermite polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2018, 28, 487–496. [Google Scholar]
- Kim, T.; Kim, D.S. Degenerate Laplace transform and degenerate gamma function. Russ. J. Math. Phys. 2017, 24, 241–248. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Kim, D.S. Some Identities on Degenerate Bernstein and Degenerate Euler Polynomials. Mathematics 2019, 7, 47. https://doi.org/10.3390/math7010047
Kim T, Kim DS. Some Identities on Degenerate Bernstein and Degenerate Euler Polynomials. Mathematics. 2019; 7(1):47. https://doi.org/10.3390/math7010047
Chicago/Turabian StyleKim, Taekyun, and Dae San Kim. 2019. "Some Identities on Degenerate Bernstein and Degenerate Euler Polynomials" Mathematics 7, no. 1: 47. https://doi.org/10.3390/math7010047
APA StyleKim, T., & Kim, D. S. (2019). Some Identities on Degenerate Bernstein and Degenerate Euler Polynomials. Mathematics, 7(1), 47. https://doi.org/10.3390/math7010047