An Iterative Algorithm for Solving Generalized Variational Inequalities and Fixed Points Problems
Abstract
:1. Introduction
2. Notation and Lemmas
- Monotone if ,
- Strongly monotone if , , where is a constant.
- α-inverse strongly monotone if , , where is a constant.
- α-inverse strongly φ-monotone if , , where is a nonlinear operator and is a constant.
- (i)
- ;
- (ii)
- (iii)
- or .
3. Main Results
- (i)
- and ;
- (ii)
- and ;
- (iii)
- ;
- (iv)
- and .
- (i)
- and ;
- (ii)
- and ;
- (iii)
- ;
- (iv)
- and .
4. Examples and Applications
- (i)
- and ;
- (ii)
- and ;
- (iii)
- ;
- (iv)
- and .
- (i)
- and ;
- (ii)
- and ;
- (iii)
- ;
- (iv)
- and .
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stampacchia, G. Formes bilineaires coercivites surles ensembles convexes. C. R. Acad. Sci. 1964, 258, 4413–4416. [Google Scholar]
- Svaiter, B.-F. A class of Fejer convergent algorithms, approximate resolvents and the hybrid proximal extragradient method. J. Optim. Theory Appl. 2014, 162, 133–153. [Google Scholar] [CrossRef]
- Yao, Y.; Liou, Y.-C.; Kang, S.-M. Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method. Comput. Math. Appl. 2010, 59, 3472–3480. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Shahzad, N. Strong convergence of a proximal point algorithm with general errors. Optim. Lett. 2012, 6, 621–628. [Google Scholar] [CrossRef]
- Chen, C.; Ma, S.; Yang, J. A general inertial proximal point algorithm for mixed variational inequality problem. SIAM J. Optim. 2014, 25, 2120–2142. [Google Scholar] [CrossRef]
- Zegeye, H.; Yao, Y. Minimum-norm solution of variational inequality and fixed point problem in Banach spaces. Optimization 2015, 64, 453–471. [Google Scholar] [CrossRef]
- Thakur, B.S.; Postolache, M. Existence and approximation of solutions for generalized extended nonlinear variational inequalities. J. Inequal. Appl. 2013, 2013, 590. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Postolache, M. Iterative methods for pseudomonotone variational inequalities and fixed point problems. J. Optim. Theory Appl. 2012, 155, 273–287. [Google Scholar] [CrossRef]
- Korpelevich, G.-M. An extragradient method for finding saddle points and for other problems. Ekon. Mat. Metody 1976, 12, 747–756. [Google Scholar]
- Glowinski, R. Numerical Methods for Nonlinear Variational Problems; Springer: New York, NY, USA, 1984. [Google Scholar]
- Bello Cruz, J.-Y.; Iusem, A.-N. A strongly convergent direct method for monotone variational inequalities in Hilbert space. Numer. Funct. Anal. Optim. 2009, 30, 23–36. [Google Scholar] [CrossRef]
- Iiduka, H.; Takahashi, W.; Toyoda, M. Approximation of solutions of variational inequalities for monotone mappings. Panam. Math. J. 2004, 14, 49–61. [Google Scholar]
- Censor, Y.; Gibali, A.; Reich, S.; Sabach, S. Common solutions to variational inequalities. Set-Valued Var. Anal. 2012, 20, 229–247. [Google Scholar] [CrossRef]
- Kassay, G.; Reich, S.; Sabach, S. Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 2011, 21, 1319–1344. [Google Scholar] [CrossRef]
- Bot, R.-I.; Csetnek, E.-R. A hybrid proximal-extragradient algorithm with inertial effects. Numer. Funct. Anal. Optim. 2015, 36, 951–963. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, R.; Xu, H.-K. Schemes for finding minimum-norm solutions of variational inequalities. Nonlinear Anal. 2010, 72, 3447–3456. [Google Scholar] [CrossRef]
- Maingé, P.-E. Strong convergence of projected reflected gradient methods for variational inequalities. Fixed Point Theory 2018, 19, 659–680. [Google Scholar] [CrossRef]
- Yao, Y.-H.; Liou, Y.C.; Yao, J.-C. Iterative algorithms for the split variational inequality and fixed point problems under nonlinear transformations. J. Nonlinear Sci. Appl. 2017, 10, 843–854. [Google Scholar] [CrossRef] [Green Version]
- Censor, Y.; Gibali, A.; Reich, S. Extensions of Korpelevichs extragradient method for the variational inequality problem in Euclidean space. Optimization 2012, 61, 1119–1132. [Google Scholar] [CrossRef]
- Bao, T.-Q.; Khanh, P.-Q. A projection-type algorithm for pseudomonotone nonlipschitzian multivalued variational inequalities. Nonconvex. Optim. Appl. 2005, 77, 113–129. [Google Scholar]
- Iusem, A.-N.; Lucambio Peerez, L.R. An extragradient-type algorithm for non-smooth variational inequalities. Optimization 2000, 48, 309–332. [Google Scholar] [CrossRef]
- Yao, Y.-H.; Postolache, M.; Liou, Y.-C.; Yao, Z.-S. Construction algorithms for a class of monotone variational inequalities. Optim. Lett. 2016, 10, 1519–1528. [Google Scholar] [CrossRef]
- He, Y.-R. A new double projection algorithm for variational inequalities. J. Comput. Appl. Math. 2006, 185, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Xia, F.-Q.; Huang, N.-J. A projection-proximal point algorithm for solving generalized variational inequalities. J. Optim. Theory Appl. 2011, 150, 98–117. [Google Scholar] [CrossRef]
- Qi, F.; Lim, D.; Guo, B.-N. Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2018, in press. [Google Scholar] [CrossRef]
- Qi, F.; Niu, D.-W.; Guo, B.-N. Some identities for a sequence of unnamed polynomials connected with the Bell polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. 2018, in press. [Google Scholar] [CrossRef]
- Ye, M.-L.; He, Y.-R. A double projection method for solving variational inequalities without mononicity. Comput. Optim. Appl. 2015, 60, 141–150. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Yao, Y.-H.; Postolache, M.; Liou, Y.-C. Strong convergence of a self-adaptive method for the split feasibility problem. Fixed Point Theory Appl. 2013, 2013, 201. [Google Scholar] [CrossRef] [Green Version]
- Browder, F.-E.; Petryshyn, W.-V. Construction of fixed points of nonlinear mappings in Hilbert spaces. J. Math. Anal. Appl. 1967, 20, 197–228. [Google Scholar] [CrossRef]
- Yao, Y.; Qin, X.; Yao, J.-C. Projection methods for firmly type nonexpansive operators. J. Nonlinear Convex. Anal. 2018, 19, 407–415. [Google Scholar]
- Zhang, L.-J.; Chen, J.-M.; Hou, Z.-B. Viscosity approximation methods for nonexpansive mappings and generalized variational inequalities. Acta Math. Sin. 2010, 53, 691–698. [Google Scholar]
- Reich, S.; Zaslavski, A.-J. Porosity and convergence results for sequences of nonexpansive mappings on unbounded sets. Appl. Anal. Optim. 2017, 1, 441–460. [Google Scholar]
- Shehu, Y. Iterative procedures for left Bregman strongly relatively nonexpansive mappings with application to equilibrium problems. Fixed Point Theory 2016, 17, 173–188. [Google Scholar]
- Thakur, B.S.; Thakur, D.; Postolache, M. A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings. Appl. Math. Comput. 2016, 275, 147–155. [Google Scholar] [CrossRef]
- Cho, S.-Y.; Qin, X.; Yao, J.-C.; Yao, Y. Viscosity approximation splitting methods for monotone and nonexpansive operators in Hilbert spaces. J. Nonlinear Convex. Anal. 2018, 19, 251–264. [Google Scholar]
- Chidume, C.-E.; Abbas, M.; Ali, B. Convergence of the Mann iteration algorithm for a class of pseudocontractive mappings. Appl. Math. Comput. 2007, 194, 1–6. [Google Scholar] [CrossRef]
- Yao, Y.; Yao, J.-C.; Liou, Y.-C.; Postolache, M. Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms. Carpathian J. Math. 2018, 34, 459–466. [Google Scholar]
- Yao, Y.; Liou, Y.-C.; Postolache, M. Self-adaptive algorithms for the split problem of the demicontractive operators. Optimization 2018, 67, 1309–1319. [Google Scholar] [CrossRef]
- Zhou, H. Strong convergence of an explicit iterative algorithm for continuous pseudo-contractions in Banach spaces. Nonlinear Anal. 2009, 70, 4039–4046. [Google Scholar] [CrossRef]
- Yao, Y.; Liou, Y.-C.; Yao, J.-C. Split common fixed point problem for two quasi-pseudocontractive operators and its algorithm construction. Fixed Point Theory Appl. 2015, 2015, 127. [Google Scholar] [CrossRef]
- Xu, H.-K. Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 2002, 2, 1–17. [Google Scholar] [CrossRef]
- Mainge, P.-E. Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 2007, 325, 469–479. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Postolache, M.; Yao, J.-C. An Iterative Algorithm for Solving Generalized Variational Inequalities and Fixed Points Problems. Mathematics 2019, 7, 61. https://doi.org/10.3390/math7010061
Yao Y, Postolache M, Yao J-C. An Iterative Algorithm for Solving Generalized Variational Inequalities and Fixed Points Problems. Mathematics. 2019; 7(1):61. https://doi.org/10.3390/math7010061
Chicago/Turabian StyleYao, Yonghong, Mihai Postolache, and Jen-Chih Yao. 2019. "An Iterative Algorithm for Solving Generalized Variational Inequalities and Fixed Points Problems" Mathematics 7, no. 1: 61. https://doi.org/10.3390/math7010061
APA StyleYao, Y., Postolache, M., & Yao, J. -C. (2019). An Iterative Algorithm for Solving Generalized Variational Inequalities and Fixed Points Problems. Mathematics, 7(1), 61. https://doi.org/10.3390/math7010061