Tribonacci and Tribonacci-Lucas Sedenions
Abstract
:1. Introduction
- is a 16-dimensional non-associative and non-commutative (Cayley-Dickson) algebra over the reals,
- is not a composition algebra or division algebra because of its zero divisors,
- is a non-alternative algebra, i.e., if and are sedenions, the rules and do not always hold,
- is a power-associative algebra, i.e., if S is a sedenion, then
2. The Tribonacci and Tribonacci-Lucas Sedenions, Their Generating Functions, and Binet’s Formulas
- (a)
- (b)
- (a)
- (b)
- (c)
- (d)
3. Some Identities for the Tribonacci and Tribonacci-Lucas Sedenions
- (a)
- (b)
- (c)
- (d)
- (e)
- (f)
- (a)
- (b)
- (c)
- (d)
- (a)
- (b)
- (c)
- (d)
- (e)
- (f)
4. Matrices and Determinants Related to Tribonacci and Tribonacci-Lucas Sedenions
- (a)
- and for all integers
- (b)
- (c)
- (a)
- (b)
- (a)
- (b)
Funding
Acknowledgments
Conflicts of Interest
References
- Feinberg, M. Fibonacci–Tribonacci. Fibonacci Q. 1963, 1, 71–74. [Google Scholar]
- Bruce, I. A modified Tribonacci sequence. Fibonacci Q. 1984, 22, 244–246. [Google Scholar]
- Catalani, M. Identities for Tribonacci-related sequences. arXiv, 2002; arXiv:math/0209179. [Google Scholar]
- Choi, E. Modular tribonacci Numbers by Matrix Method. J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 2013, 20, 207–221. [Google Scholar] [CrossRef]
- Elia, M. Derived Sequences, The Tribonacci Recurrence and Cubic Forms. Fibonacci Q. 2001, 39, 107–115. [Google Scholar]
- Lin, P.Y. De Moivre-Type Identities For The Tribonacci Numbers. Fibonacci Q. 1988, 26, 131–134. [Google Scholar]
- Pethe, S. Some Identities for Tribonacci sequences. Fibonacci Q. 1988, 26, 144–151. [Google Scholar]
- Scott, A.; Delaney, T.; Hoggatt, V., Jr. The Tribonacci sequence. Fibonacci Q. 1977, 15, 193–200. [Google Scholar]
- Shannon, A. Tribonacci numbers and Pascal’s pyramid. Fibonacci Q. 1977, 15, 268–275. [Google Scholar]
- Spickerman, W.; Joyner, R.N. Binets’s formula for the Recursive sequence of Order K. Fibonacci Q. 1984, 22, 327–331. [Google Scholar]
- Yalavigi, C.C. Properties of Tribonacci numbers. Fibonacci Q. 1972, 10, 231–246. [Google Scholar]
- Yilmaz, N.; Taskara, N. Tribonacci and Tribonacci-Lucas Numbers via the Determinants of Special Matrices. Appl. Math. Sci. 2014, 8, 1947–1955. [Google Scholar] [CrossRef]
- Spickerman, W. Binet’s formula for the Tribonacci sequence. Fibonacci Q. 1982, 20, 118–120. [Google Scholar]
- Biss, D.K.; Dugger, D.; Isaksen, D.C. Large annihilators in Cayley-Dickson algebras. Commun. Algebra 2008, 36, 632–664. [Google Scholar] [CrossRef]
- Imaeda, K.; Imaeda, M. Sedenions: Algebra and analysis. Appl. Math. Comput. 2000, 115, 77–88. [Google Scholar] [CrossRef]
- Moreno, G. The zero divisors of the Cayley-Dickson algebras over the real numbers. Bol. Soc. Mat. Mexicana 1998, 4, 13–28. [Google Scholar]
- Bilgici, G.; Tokeşer, Ü.; Ünal, Z. Fibonacci and Lucas Sedenions. J. Integer Seq. 2017, 20, 17.1.8. [Google Scholar]
- Cawagas, E.R. On the Structure and Zero Divisors of the Cayley-Dickson Sedenion Algebra, Discussiones Mathematicae. Gen. Algebra Appl. 2004, 24, 251–265. [Google Scholar]
- Cariow, A.; Cariowa, G. An Algorithm for Fast Multiplication of Sedenios. Inf. Proccess. Lett. 2013, 113, 324–331. [Google Scholar] [CrossRef]
- Makarov, O.M. An algorithm for the multiplication of two quaternions. USSR Comput. Math. Math. Phys. 1978, 17, 221–222. [Google Scholar] [CrossRef]
- Cariow, A.; Cariowa, G. Algorithm for Multiplying Two Octonions, Radioelectronics and Communications Systems; Allerton Press, Inc.: New York, NY, USA, 2012; Volume 55, pp. 464–473. [Google Scholar]
- Köplinger, J. Signature of gravity in conic sedenions. Appl. Math. Comput. 2007, 188, 942–947. [Google Scholar] [CrossRef]
- Köplinger, J. Gravity and eletromagnetism an conic sedenions. Appl. Math. Comput. 2007, 188, 948–953. [Google Scholar]
- Muses, C.A. Hypernumber and quantum field theory with a summary of physically applicable hypernumber arithmetics and their geometrics. Appl. Math. Comput. 1980, 6, 63–94. [Google Scholar]
- Baez, J. The octonions. Bull. Am. Math. Soc. 2002, 39, 145–205. [Google Scholar] [CrossRef]
- Okubo, S. Introduction to Octonions and Other Non-Associative Algebras in Physics; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Horadam, A.F. Complex Fibonacci Numbers and Fibonacci quaternions. Am. Math. Mon. 1963, 70, 289–291. [Google Scholar] [CrossRef]
- Halici, S.; Karataş, A. On a Generalization for Fibonacci Quaternions. Chaos Solitons Fractals 2017, 98, 178–182. [Google Scholar] [CrossRef]
- Polatlı, E. A Generalization of Fibonacci and Lucas Quaternions. Adv. Appl. Clifford Algebras 2016, 26, 719–730. [Google Scholar] [CrossRef]
- Cerda-Morales, G. On a Generalization for Tribonacci Quaternions. Mediterr. J. Math. 2017, 14, 1–12. [Google Scholar] [CrossRef]
- Keçilioglu, O.; Akkuş, I. The Fibonacci Octonions. Adv. Appl. Clifford Algebr 2015, 25, 151–158. [Google Scholar] [CrossRef]
- Çimen, C.; İpek, A. On Jacobsthal and Jacobsthal-Lucas Octonions. Mediterr. J. Math. 2017, 14, 1–13. [Google Scholar] [CrossRef]
- Cerda-Morales, G. The Third Order Jacobsthal Octonions: Some Combinatorial Properties. arXiv, 2017; arXiv:1710.00602v1. [Google Scholar] [CrossRef]
- Cerda-Morales, G. The Unifying Formula for All Tribonacci-Type Octonions Sequences and Their Properties. arXiv, 2018; arXiv:1807.04140v1. [Google Scholar]
- Catarino, P. k-Pell, k-Pell-Lucas and modified k-Pell sedenions. Asian-Eur. J. Math. 2018. [Google Scholar] [CrossRef]
- Çimen, C.; İpek, A. On Jacobsthal and Jacobsthal-Lucas Sedenios and Several Identities Involving These Numbers. Math. Aeterna 2017, 7, 447–454. [Google Scholar]
- Gül, K. On k-Fibonacci and k-Lucas Trigintaduonions. Int. J. Contemp. Math. Sci. 2018, 13, 1–10. [Google Scholar] [CrossRef]
- Li, J.; Jiang, Z.; Lu, F. Determinants, Norms and Spread of Circulant Matrices with Tribonacci and Generalized Lucas Numbers. Abstr. Appl. Anal. 2014, 2014, 381829. [Google Scholar] [CrossRef]
- Cerda-Morales, G. A Three-By-Three Matrix Representation of a Generalized Tribonacci sequence. arXiv, 2018; arXiv:1807.03340v1. [Google Scholar]
- Devbhadra, S.V. Some Tribonacci Identities. Math. Today 2011, 27, 1–9. [Google Scholar]
- Kılıç, E. Tribonacci Sequences with Certain Indices and Their Sums. Ars. Comb. 2008, 86, 13–22. [Google Scholar]
- Frontczak, R. Sums of Tribonacci and Tribonacci-Lucas Numbers. Int. J. Math. Anal. 2018, 12, 19–24. [Google Scholar] [CrossRef]
- Kuhapatanakul, K.; Sukruan, L. The Generalized Tribonacci Numbers With Negative Subscripts. Integer 2014, 14, 1–6. [Google Scholar]
- Howard, F.T. A Tribonacci Identity. Fibonacci Q. 2001, 39, 352–357. [Google Scholar]
- Melham, R.S.; Shannon, A.G. A Generalization of a Result of D’Ocagne. Fibonacci Q. 1995, 33, 135–138. [Google Scholar]
- Basu, M.; Das, M. Tribonacci Matrices and a New Coding Theory, Discrete Mathematics. Algorithms Appl. 2014, 6, 1450008. [Google Scholar]
- Shannon, A.G.; Horadam, A.F. Some Properties of Third-Order Recurrence Relations. Fibonacci Q. 1972, 10, 135–146. [Google Scholar]
- Yalavigi, C.C. A Note on ‘Another Generalized Fibonacci Sequence’. Math. Stud. 1971, 39, 407–408. [Google Scholar]
- Waddill, M.E. Using Matrix Techniques to Establish Properties of a Generalized Tribonacci Sequence. In Applications of Fibonacci Numbers; Bergum, G.E., Philippou, A.N., Horadam, A.F., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991; Volume 4, pp. 299–308. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soykan, Y. Tribonacci and Tribonacci-Lucas Sedenions. Mathematics 2019, 7, 74. https://doi.org/10.3390/math7010074
Soykan Y. Tribonacci and Tribonacci-Lucas Sedenions. Mathematics. 2019; 7(1):74. https://doi.org/10.3390/math7010074
Chicago/Turabian StyleSoykan, Yüksel. 2019. "Tribonacci and Tribonacci-Lucas Sedenions" Mathematics 7, no. 1: 74. https://doi.org/10.3390/math7010074
APA StyleSoykan, Y. (2019). Tribonacci and Tribonacci-Lucas Sedenions. Mathematics, 7(1), 74. https://doi.org/10.3390/math7010074