The Non-Eigenvalue Form of Liouville’s Formula and α-Matrix Exponential Solutions for Combined Matrix Dynamic Equations on Time Scales
Abstract
:1. Introduction
- (i)
- the combined matrix exponential function is introduced and studied;
- (ii)
- Liouville’s formula of diamond- matrix dynamic equations is obtained without considering the eigenpolynomial and eigenvalue;
- (iii)
- some classes of diamond- matrix dynamic equations which have -matrix exponential solutions are investigated;
- (iv)
- the obtained results are completely new even for and ∇-matrix dynamic equations and several examples on various time scales are provided.
2. Liouville’S Formula for -Dynamic Equations
3. Liouville’S Formula for ∇-Dynamic Equations and Some Lemmas
4. Liouville’S Formula of Diamond- Dynamic Equations
Author Contributions
Funding
Conflicts of Interest
References
- Anderson, D.R. Taylor polynomials for nabla dynamic equations on time scales. PanAm. Math. J. 2002, 12, 17–27. [Google Scholar]
- Anderson, D.R.; Bullock, J.; Erbe, L.; Peterson, A.; Tran, H. Nabla dynamic equations on time scales. PanAm. Math. J. 2003, 13, 1–47. [Google Scholar]
- Atici, F.M.; Biles, D.C.; Lebedinsky, A. An application of time scales to economics. Math. Comput. Model. 2006, 43, 718–726. [Google Scholar] [CrossRef]
- Atici, F.M.; Biles, D.C. Further development of stochastic calculus on time scales. PanAm. Math. J. 2015, 25, 13–24. [Google Scholar]
- Wang, C.; Agarwal, R.P. Almost periodic solution for a new type of neutral impulsive stochastic Lasota-Wazewska timescale model. Appl. Math. Lett. 2017, 70, 58–65. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Wong, P.J.Y. Sturm-Liouville eigenvalue problems on time scales. Appl. Math. Comput. 1999, 99, 153–166. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D. An Introduction to Ordinary Differential Equations; Springer: New York, NY, USA, 2008. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; O’Regan, D.; Peterson, A. Dynamic equations on time scales: A survey. J. Comput. Appl. Math. 2002, 141, 1–26. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales, An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Hartman, P. Ordinary Differential Equations; Wiley: New York, NY, USA, 1964. [Google Scholar]
- Adamec, L. A remark on Liouville’s formula on small time scales. J. Math. Anal. Appl. 2005, 304, 504–510. [Google Scholar] [CrossRef]
- Cormani, V. Liouville’s formula on time scales. Dyn. Systems Appl. 2003, 12, 79–86. [Google Scholar]
- Sheng, Q.; Fadag, M.; Henderson, J.; Davis, J.M. An exploration of combined dynamic dervatives on times cales and their applications. Nonlinear Anal. RWA 2006, 7, 395–413. [Google Scholar] [CrossRef]
- Mozyrska, D.; Torres, D.F.M. A study of diamond-alpha dynamic equations on regular time scales. arXiv 2009, arXiv:0902.1380. [Google Scholar]
- Malinowska, A.B.; Torres, D.F.M. On the diamond-alpha Riemann integral and mean value theorems on time scales. Dyn. Syst. Appl. 2009, 18, 469–482. [Google Scholar]
- Rogers, J.W., Jr.; Sheng, Q. Notes on the diamond-α dynamic derivative on time scales. J. Math. Anal. Appl. 2007, 326, 228–241. [Google Scholar] [CrossRef]
- Sheng, Q. Hybrid approximations via second order combined dynamic derivatives on time scales. Electron. J. Qual. Theory Differ. Equ. 2007, 17, 1–13. [Google Scholar] [CrossRef]
- Ammi, M.R.S.; Ferreira, R.A.C.; Torres, D.F.M. Diamond-α Jensen’s inequality on time scales. J. Inequal. Appl. 2008, 2008, 576876. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wang, C.; Agarwal, R.P. The Non-Eigenvalue Form of Liouville’s Formula and α-Matrix Exponential Solutions for Combined Matrix Dynamic Equations on Time Scales. Mathematics 2019, 7, 962. https://doi.org/10.3390/math7100962
Li Z, Wang C, Agarwal RP. The Non-Eigenvalue Form of Liouville’s Formula and α-Matrix Exponential Solutions for Combined Matrix Dynamic Equations on Time Scales. Mathematics. 2019; 7(10):962. https://doi.org/10.3390/math7100962
Chicago/Turabian StyleLi, Zhien, Chao Wang, and Ravi P. Agarwal. 2019. "The Non-Eigenvalue Form of Liouville’s Formula and α-Matrix Exponential Solutions for Combined Matrix Dynamic Equations on Time Scales" Mathematics 7, no. 10: 962. https://doi.org/10.3390/math7100962
APA StyleLi, Z., Wang, C., & Agarwal, R. P. (2019). The Non-Eigenvalue Form of Liouville’s Formula and α-Matrix Exponential Solutions for Combined Matrix Dynamic Equations on Time Scales. Mathematics, 7(10), 962. https://doi.org/10.3390/math7100962