Coefficient Bounds for Certain Subclasses of q-Starlike Functions
Abstract
:1. Introduction and Preliminaries
2. Main Results
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J. Aspects of contemporary complex analysis. In Proceedings of the NATO Advanced Study Institute Held at University of Durham; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1. Arch. Ration. March. Anal. 1967, 32, 100–112. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Altinkaya, H.; Yalcin, S. Initial coefficient bounds for a general class of bi-univalent functions. Int. J. Anal. 2014, 2014, 867–871. [Google Scholar]
- Hussain, S.; Khan, S.; Zaighum, M.A.; Darus, M.; Shareef, Z. Coefficients bounds for certain subclass of bi-univalent functions associated with Ruscheweyh q-differential operator. J. Complex Anal. 2017, 2017, 2826514. [Google Scholar]
- Keerthi, B.S.; Raja, B. Coefficient inequality for certain new subclasses analytic bi-univalent functions. Theoret. Math. Appl. 2013, 3, 1–10. [Google Scholar]
- Li, X.-F.; Wang, A.-P. Two new subclasses of bi-univalent functions. Int. Math. Forum 2012, 7, 1495–1504. [Google Scholar]
- Magesh, N.; Yamini, J. Coefficient bounds for certain subclass of bi-univalent functions. Int. Math. Forum 2013, 8, 1337–1344. [Google Scholar] [CrossRef]
- Porwal, S.; Darus, M. On a new subclass of bi-univalent functions. J. Egyptian Math. Soc. 2013, 21, 190–193. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Khan, S.; Ahmad, Q.Z.; Khan, N.; Hussain, S. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. Stud. Univ. Babeş-Bolyai Math. 2018, 63, 419–436. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S.; Ali, R.M. Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 2015, 29, 1839–1845. [Google Scholar] [CrossRef]
- Goodman, A.W. Univalent Functions; Polygonal Publishing House: Washington, NJ, USA, 1983; Volumes I–II. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations, Theory and Applications; Series of Monographs and Textbooks in Pure and Application Mathematics; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. q-difference equations. Amer. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vandenhoeck & Ruprecht: Gottingen, Germany, 1975. [Google Scholar]
- Duren, P.L. Univalent Functions. In Grundehren der Math. Wiss.; Springer: New York, NY, USA, 1983; p. 259. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.-L.; Wang, Z.-G.; Khan, S.; Hussain, S.; Naeem, M.; Mahmood, T. Coefficient Bounds for Certain Subclasses of q-Starlike Functions. Mathematics 2019, 7, 969. https://doi.org/10.3390/math7100969
Fan L-L, Wang Z-G, Khan S, Hussain S, Naeem M, Mahmood T. Coefficient Bounds for Certain Subclasses of q-Starlike Functions. Mathematics. 2019; 7(10):969. https://doi.org/10.3390/math7100969
Chicago/Turabian StyleFan, Lin-Lin, Zhi-Gang Wang, Shahid Khan, Saqib Hussain, Muhammad Naeem, and Tahir Mahmood. 2019. "Coefficient Bounds for Certain Subclasses of q-Starlike Functions" Mathematics 7, no. 10: 969. https://doi.org/10.3390/math7100969