Well-Posedness Results for the Continuum Spectrum Pulse Equation
Abstract
:1. Introduction
2. Vanishing Viscosity Approximation
3. Proof of Theorem 1
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A.
References
- Coclite, G.M.; di Ruvo, L. Convergence of the Ostrovsky Equation to the Ostrovsky-Hunter One. J. Differ. Equ. 2014, 256, 3245–3277. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Oleinik type estimate for the Ostrovsky-Hunter equation. J. Math. Anal. Appl. 2015, 423, 162–190. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Wellposedness of bounded solutions of the non-homogeneous initial boundary value problem for the Ostrovsky-Hunter equation. J. Hyperbolic Differ. Equ. 2015, 12, 221–248. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Wellposedness results for the short pulse equation. Z. Angew. Math. Phys. 2015, 66, 1529–1557. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Well-posedness and dispersive/diffusive limit of a generalized Ostrovsky-Hunter equation. Milan J. Math. 2018, 86, 31–51. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Classical solutions for an Ostrovsky type equation. Submitted.
- Bespalov, V.G.; Kozlov, S.A.; Shpolyanskiy, Y.A. Method for analyzing the propagation dynamics of femtosecond pulses with a continuum spectrum in transparent optical media. J. Opt. Technol. 2000, 67, 5–11. [Google Scholar] [CrossRef]
- Bespalov, V.G.; Kozlov, S.A.; Shpolyanskiy, Y.A.; Walmsley, I.A. Simplified field wave equations for the nonlinear propagation of extremely short light pulses. Phys. Rev. A 2002, 66, 013811. [Google Scholar] [CrossRef]
- Bespalov, V.G.; Kozlov, S.A.; Sutyagin, A.N.; Shpolyansky, Y.A. Spectral super-broadening of high-power femtosecond laser pulses and their time compression down to one period of the light field. J. Opt. Technol. 1998, 65, 823–825. [Google Scholar]
- Gagarskiĭ, S.V.; Prikhod’ko, K.V. Measuring the parameters of femtosecond pulses in a wide spectral range on the basis of the multiphoton-absorption effect in a natural diamond crystal. J. Opt. Technol. 2008, 75, 139–143. [Google Scholar] [CrossRef]
- Konev, L.S.; Shpolyanskiì, Y.A. Calculating the field and spectrum of the reverse wave induced when a femtosecond pulse with a superwide spectrum propagates in an optical waveguide. J. Opt. Technol. 2014, 81, 6–11. [Google Scholar] [CrossRef]
- Kozlov, S.A.; Sazonov, S.V. Nonlinear propagation of optical pulses of a few oscillations duration in dielectric media. J. Exp. Theor. Phys. 1997, 84, 221–228. [Google Scholar] [CrossRef]
- Melnik, M.V.; Tcypkin, A.N.; Kozlov, S.A. Temporal coherence of optical supercontinuum. Rom. J. Phys. 2018, 63, 203. [Google Scholar]
- Shpolyanskiy, Y.A.; Belov, D.I.; Bakhtin, M.A.; Kozlov, S.A. Analytic study of continuum spectrum pulse dynamics in optical waveguides. Appl. Phys. B 2003, 77, 349–355. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. A non-local elliptic-hyperbolic system related to the short pulse equation. Nonlinear Anal. 2020, 190, 111606. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Convergence of the solutions on the generalized Korteweg-de Vries equation. Math. Model. Anal. 2016, 21, 239–259. [Google Scholar] [CrossRef]
- Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Sharp global wellposednees for KDV and modified KDV on and . J. Am. Math. Soc. 2003, 16, 705–749. [Google Scholar] [CrossRef]
- Kenig, C.E.; Ponce, G.; Vega, L. Wellposedness and scattering results for the generalized Korteweg-de Vries Equation via the contraction principle. Commun. Pure Appl. Math. 1993, 46, 527–620. [Google Scholar] [CrossRef]
- Schonbek, M.E. Convergence of solutions to nonlinear dispersive equations. Commun. Part. Differ. Equ. 1982, 7, 959–1000. [Google Scholar]
- Tao, T. Nonlinear dispersive equations. In CBMS Regional Conference Series in Mathematics; Local and Global Analysis; Conference Board of the Mathematical Sciences: Washington, DC, USA, 2006; Volume 106. [Google Scholar]
- Belashenkov, N.R.; Drozdov, A.A.; Kozlov, S.A.; Shpolyanskiy, Y.A.; Tsypkin, A.N. Phase modulation of femtosecond light pulses whose spectra are superbroadened in dielectrics with normal group dispersion. J. Opt. Technol. 2008, 75, 611–614. [Google Scholar] [CrossRef]
- Leblond, H.; Mihalache, D. Few-optical-cycle solitons: Modified Korteweg-de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models. Phys. Rev. A 2009, 79, 063835. [Google Scholar] [CrossRef]
- Leblond, H.; Mihalache, D. Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 2013, 523, 61–126. [Google Scholar] [CrossRef] [Green Version]
- Leblond, H.; Sanchez, F. Models for optical solitons in the two-cycle regime. Phys. Rev. A 2003, 67, 013804. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, T.; Wayne, C.E. Propagation of ultra-short optical pulses in cubic nonlinear media. Physica D 2004, 196, 90–105. [Google Scholar] [CrossRef]
- Amiranashvili, S.; Vladimirov, A.G.; Bandelow, U. A model equation for ultrashort optical pulses. Eur. Phys. J. D 2010, 58, 219. [Google Scholar] [CrossRef]
- Amiranashvili, S.; Vladimirov, A.G.; Bandelow, U. Solitary-wave solutions for few-cycle optical pulses. Phys. Rev. A 2008, 77, 063821. [Google Scholar] [CrossRef] [Green Version]
- Coclite, G.M.; di Ruvo, L. Discontinuous solutions for the generalized short pulse equation. Evol. Equ. Control Theory 2019, 8, 737–753. [Google Scholar] [CrossRef] [Green Version]
- Beals, R.; Rabelo, M.; Tenenblat, K. Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations. Stud. Appl. Math. 1989, 81, 125–151. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. On the well-posedness of the exp-Rabelo equation. Ann. Mater. Pure Appl. 2016, 195, 923–933. [Google Scholar] [CrossRef]
- Rabelo, M. On equations which describe pseudospherical surfaces. Stud. Appl. Math. 1989, 81, 221–248. [Google Scholar] [CrossRef]
- Sakovich, A.; Sakovich, S. On the transformations of the Rabelo equations. SIGMA 3 2007, 8. [Google Scholar] [CrossRef]
- Tsitsas, N.L.; Horikis, T.P.; Shen, Y.; Kevrekidis, P.G.; Whitaker, N.; Frantzeskakis, D.J. Short pulse equations and localized structures in frequency band gaps of nonlinear metamaterials. Phys. Lett. A 2010, 374, 1384–1388. [Google Scholar] [CrossRef] [Green Version]
- Nikitenkova, S.P.; Stepanyants, Y.A.; Chikhladze, L.M. Solutions of the modified Ostrovskii equation with cubic non-linearity. J. Appl. Math. Mech. 2000, 64, 267–274. [Google Scholar] [CrossRef]
- Lattanzio, C.; Marcati, P. Global well-posedness and relaxation limits of a model for radiating gas. J. Differ. Equ. 2013, 190, 439–465. [Google Scholar] [CrossRef]
- Serre, D. L1-stability of constants in a model for radiating gases. Commun. Math. Sci. 2003, 1, 197–205. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Discontinuous solutions for the short-pulse master mode-locking equation. AIMS Math. 2019, 4, 437–462. [Google Scholar] [CrossRef]
- Farnum, E.D.; Kutz, J.N. Master mode-locking theory for few-femtosecond pulses. J. Opt. Soc. Am. B 2010, 35, 3033–3035. [Google Scholar] [CrossRef]
- Farnum, E.D.; Kutz, J.N. Dynamics of a low-dimensional model for short pulse mode locking. Photonics 2015, 2, 865–882. [Google Scholar] [CrossRef]
- Farnum, E.D.; Kutz, J.N. Short-pulse perturbation theory. J. Opt. Soc. Am. B 2013, 30, 2191–2198. [Google Scholar] [CrossRef]
- Pelinovsky, D.; Schneider, G. Rigorous justification of the short-pulse equation. Nonlinear Differ. Equ. Appl. 2013, 20, 1277–1294. [Google Scholar] [CrossRef]
- Davidson, M. Continuity properties of the solution map for the generalized reduced Ostrovsky equation. J. Differ. Equ. 2012, 252, 3797–3815. [Google Scholar] [CrossRef] [Green Version]
- Pelinovsky, D.; Sakovich, A. Global well-posedness of the short-pulse and sine-Gordon equations in energy space. Commun. Part. Differ. Equ. 2010, 352, 613–629. [Google Scholar] [CrossRef]
- Stefanov, A.; Shen, Y.; Kevrekidis, P.G. Well-posedness and small data scattering for the generalized Ostrovsky equation. J. Differ. Equ. 2010, 249, 2600–2617. [Google Scholar] [CrossRef] [Green Version]
- Coclite, G.M.; di Ruvo, L.; Karlsen, K.H. Some wellposedness results for the Ostrovsky-Hunter equation. In Hyperbolic Conservation Laws and Related Analysis with Applications; Springer Proceedings in Mathematics & Statistics; Springer: Heidelberg, Germany, 2014; Volume 49, pp. 143–159. [Google Scholar]
- Di Ruvo, L. Discontinuous Solutions for the Ostrovsky–Hunter Equation and Two Phase Flows. Ph.D. Thesis, University of Bari, Bari, Italy, 2013. Available online: www.dm.uniba.it/home/dottorato/dottorato/tesi/ (accessed on 1 June 2013).
- Coclite, G.M.; di Ruvo, L. Wellposedness of bounded solutions of the non-homogeneous initial boundary for the short pulse equation. Boll. Unione Mater. Ital. 2015, 8, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Coclite, G.M.; di Ruvo, L. A note on the non-homogeneous initial boundary problem for an Ostrovsky-Hunter type equation. Discr. Contin. Dyn. Syst. Ser. S. To Appear.
- Coclite, G.M.; di Ruvo, L.; Karlsen, K.H. The initial-boundary-value problem for an Ostrovsky-Hunter type equation. In Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis; EMS Series Congress Report; European Mathematical Society Zürich: Zürich, Switzerland, 2018; pp. 97–109. [Google Scholar]
- Ridder, J.; Ruf, A.M. A convergent finite difference scheme for the Ostrovsky-Hunter equation with Dirichlet boundary conditions. BIT Numer. Math. 2019, 59, 775–796. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. A non-local regularization of the short pulse equation. Minimax Theory Appl.
- Coclite, G.M.; Ridder, J.; Risebro, H. A convergent finite difference scheme for the Ostrovsky-Hunter equation on a bounded domain. BIT Numer. Math. 2017, 57, 93–122. [Google Scholar] [CrossRef]
- Costanzino, N.; Manukian, V.; Jones, C.K.R.T. Solitary waves of the regularized short pulse and Ostrovsky equations. SIAM J. Math. Anal. 2009, 41, 2088–2106. [Google Scholar] [CrossRef]
- Liu, Y.; Pelinovsky, D.; Sakovich, A. Wave breaking in the short-pulse equation. Dyn. PDE 2009, 6, 291–310. [Google Scholar] [CrossRef] [Green Version]
- Coclite, G.M.; di Ruvo, L. Dispersive and Diffusive limits for Ostrovsky-Hunter type equations. Nonlinear Differ. Equ. Appl. 2015, 22, 1733–1763. [Google Scholar] [CrossRef]
- LeFloch, P.G.; Natalini, R. Conservation laws with vanishing nonlinear diffusion and dispersion. Nonlinear Anal. 1992, 36, 212–230. [Google Scholar]
- Coclite, G.M.; di Ruvo, L. Convergence of the regularized short pulse equation to the short pulse one. Math. Nachr. 2018, 291, 774–792. [Google Scholar] [CrossRef]
- Coclite, G.M.; Garavello, M. A Time Dependent Optimal Harvesting Problem with Measure Valued Solutions. SIAM J. Control Optim. 2017, 55, 913–935. [Google Scholar] [CrossRef]
- Coclite, G.M.; Garavello, M.; Spinolo, L.V. Optimal strategies for a time-dependent harvesting problem. Discr. Contin. Dyn. Syst. Ser. S 2016, 11, 865–900. [Google Scholar] [CrossRef]
- Simon, J. Compact sets in the space Lp(0, T; B). Ann. Mater. Pura Appl. 1987, 4, 65–94. [Google Scholar]
- Coclite, G.M.; di Ruvo, L. Wellposedness of the Ostrovsky-Hunter Equation under the combined effects of dissipation and short wave dispersion. J. Evol. Equ. 2016, 16, 365–389. [Google Scholar] [CrossRef]
- Coclite, G.M.; Holden, H.; Karlsen, K.H. Wellposedness for a parabolic-elliptic system. Discr. Contin. Dyn. Syst. 2005, 13, 659–682. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coclite, G.M.; Ruvo, L.d. Well-Posedness Results for the Continuum Spectrum Pulse Equation. Mathematics 2019, 7, 1006. https://doi.org/10.3390/math7111006
Coclite GM, Ruvo Ld. Well-Posedness Results for the Continuum Spectrum Pulse Equation. Mathematics. 2019; 7(11):1006. https://doi.org/10.3390/math7111006
Chicago/Turabian StyleCoclite, Giuseppe Maria, and Lorenzo di Ruvo. 2019. "Well-Posedness Results for the Continuum Spectrum Pulse Equation" Mathematics 7, no. 11: 1006. https://doi.org/10.3390/math7111006
APA StyleCoclite, G. M., & Ruvo, L. d. (2019). Well-Posedness Results for the Continuum Spectrum Pulse Equation. Mathematics, 7(11), 1006. https://doi.org/10.3390/math7111006