A Note on the Generalized Relativistic Diffusion Equation
Abstract
:1. Introduction
2. Preliminaries on Fractional Relativistic Stable Processes and Fractional Operators
2.1. Fractional Relativistic Diffusion and Relativistic Stable Processes
2.2. Fractional Derivatives of a Function with Respect to Another Function
3. On the Generalized Relativistic Diffusion Equation
- if , we have the fractional Dodson diffusion equation studied in [6].
- if , we have the time-fractional diffusion involving a regularized Hadamard fractional derivative.
4. Time-Scaled Fractional Tempered Stable Process
5. An Application to Generalized Fractional Bessel-Riesz Motion
6. Conclusions and Open Problems
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Baeumer, B.; Meerschaert, M.M.; Naber, M. Stochastic models for relativistic diffusion. Phys. Rev. E 2010, 82, 011132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beghin, L. On fractional tempered stable processes and their governing differential equations. J. Comput. Phys. 2015, 293, 29–39. [Google Scholar] [CrossRef]
- Shieh, N.R. On time-fractional relativistic diffusion equations. J. Pseudo-Differ. Oper. Appl. 2012, 3, 229–237. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Colombaro, I.; Garra, R.; Giusti, A.; Mainardi, F. Scott-Blair models with time-varying viscosity. Appl. Math. Lett. 2018, 86, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Garra, R.; Giusti, A.; Mainardi, F. The fractional Dodson diffusion equation: A new approach. Ricerche di Matematica 2018, 1–11. [Google Scholar] [CrossRef]
- Anh, V.V.; Leonenko, N.N.; Sikorskii, A. Stochastic representation of fractional Bessel-Riesz motion. Chaos Solitons Fractals 2017, 102, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Gajda, J.; Kumar, A.; Wylomańska, A. Stable Lévy process delayed by tempered stable subordinator. Stat. Probab. Lett. 2019, 145, 284–292. [Google Scholar] [CrossRef]
- Kumar, A.; Gajda, J.; Wylomanska, A.; Poloczanski, R. Fractional Brownian motion delayed by tempered and inverse tempered stable subordinators. Methodol. Comput. Appl. Probab. 2019, 21, 185–202. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science Publishers: Yverdon-les-Bains, Switzerland, 1993. [Google Scholar]
- Kilbas, A.A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science Limited: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Pagnini, G. Erdélyi-Kober fractional diffusion. Fract. Calc. Appl. Anal. 2012, 15, 117–127. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin, Germany, 2014. [Google Scholar]
- Mainardi, F. The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 1996, 9, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Orsingher, E.; Beghin, L. Fractional diffusion equations and processes with randomly varying time. Ann. Probab. 2009, 37, 206–249. [Google Scholar] [CrossRef]
- Gupta, N.; Kumar, A.; Leonenko, N. Mixtures of tempered stable subordinators. arXiv 2019, arXiv:1905.00192v1. [Google Scholar]
- Beghin, L.; Macci, C.; Martinucci, B. Random time-changes and asymptotic results for a class of continuous-time Markov chains on integers with alternating rates. arXiv 2018, arXiv:1802.06434v1. [Google Scholar]
- Ayache, A.; Cohen, S.; Lévy Véhel, J. The covariance structure of multifractional Brownian motion, with application to long range dependence. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing—ICASSP 2000, Istanbul, Turkey, 5–9 June 2000. [Google Scholar]
- Kaj, I.; Martin-Lof, A. Scaling Limit Results for the Sum of Many Inverse Levy Subordinators. arXiv 2012, arXiv:1203.6831. [Google Scholar]
- D’Ovidio, M. On the fractional counterpart of the higher-order equations. Stat. Probab. Lett. 2011, 81, 1929–1939. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E.; Tarasova, S.S. Probabilistic Interpretation of Kober Fractional Integral of Non-Integer Order. Prog. Fract. Differ. Appl. 2019, 5, 1–5. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beghin, L.; Garra, R. A Note on the Generalized Relativistic Diffusion Equation. Mathematics 2019, 7, 1009. https://doi.org/10.3390/math7111009
Beghin L, Garra R. A Note on the Generalized Relativistic Diffusion Equation. Mathematics. 2019; 7(11):1009. https://doi.org/10.3390/math7111009
Chicago/Turabian StyleBeghin, Luisa, and Roberto Garra. 2019. "A Note on the Generalized Relativistic Diffusion Equation" Mathematics 7, no. 11: 1009. https://doi.org/10.3390/math7111009
APA StyleBeghin, L., & Garra, R. (2019). A Note on the Generalized Relativistic Diffusion Equation. Mathematics, 7(11), 1009. https://doi.org/10.3390/math7111009