Mathematical Analysis of an Autoimmune Diseases Model: Kinetic Approach
Abstract
:1. Introduction
2. Mathematical Model
2.1. Kinetic-Type Models
2.1.1. General Description
2.1.2. Examples
2.1.3. Functional State of Active Particles
2.2. Kinetic-Type Model of Autoimmune Disease
2.2.1. The Main Biological Assumptions
- host cells, denoted by the subscript h;
- immune cells, denoted by the subscript i;
- viral particles with molecular mimicry, denoted by the subscript v.
2.2.2. Description of the Kinetic Model of Autoimmune Disease
- models the birth rate of healthy host cells from sources within the organism: it is assumed that their production is limited by the amount of healthy cells present in the organism;
- characterizes the proliferation rate of the healthy host cells;
- refers to the concentration of the healthy cells at which their proliferation turns off;
- describes the natural mortality rate of the healthy cells;
- describes the rate of damaging of the healthy cells by the immune cells;
- is the natural mortality rate of the damaged host cells.
- is the birth rate of immune cells due to the presence of self-antigens presented by damaged host cells;
- is the birth rate of immune cells due to the presence of viruses;
- is the natural mortality rate of the immune cells;
- the factor is related to the assumption that the state of activity of the newly produced immune cells is low and they need time for activation;
- Due to the viral infection and certain cytokines and chemokines released by the damaged cells the activity of the immune cells can increase. The raising of the functional state of the immune cells is described by the conservative term which do not change the concentration of the immune cells.
- is the rate of replication of viruses;
- is the rate of destruction of the viruses due to the immune response;
- is the natural mortality rate of the viruses.
3. Results of Simulations
4. Concluding Remarks
Funding
Acknowledgments
Conflicts of Interest
References
- Anderson, C.C.; Bretscher, P.; Corthay, A.; Dembic, Z.; Havele, C.; Nagy, Z.A.; Øynebraten, I. Immunological Tolerance: Part I of a Report of a Workshop on Foundational Concepts of Immune Regulation. Scand. J. Immunol. 2017, 85, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Janeway, C.; Travers, P.; Walport, M.; Shlomchik, M. Immunobiology: The Immune System in Health and Disease; Garland: New York, NY, USA, 2006. [Google Scholar]
- Campbell, A.W. Autoimmunity and the Gut. Autoimmune Dis. 2014, 2014, 152428. [Google Scholar] [CrossRef] [PubMed]
- Vojdani, A. A potential link between environmental triggers and autoimmunity. Autoimmune Dis. 2013, 2013, 437231. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, F.; Agmon-Levin, N.; Perricone, C. Genetic factors of autoimmune diseases 2017. J. Immunol. Res. 2017, 2017, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Pelajo, C.F.; Lopez-Benitez, J.M.; Miller, L.C. Vitamin D and autoimmune rheumatologic disorders. Autoimmun. Rev. 2010, 9, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Agmon-Levin, N.; Theodor, E.; Segal, R.; Shoenfeld, Y. Vitamin D in systemic and organ-specific autoimmune diseases. Clin. Rev. Allergy Immunol. 2013, 45, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Syage, J.; Kelly, C.; Dickason, M.; Ramirez, A.C.; Leon, F.; Dominguez, R.; Sealey-Voyksner, J. Determination of gluten consumption in celiac disease patients on agluten-free diet. Am. J. Clin. Nutr. 2018, 107, 201–207. [Google Scholar] [CrossRef]
- Lebwohl, B.; Ludvigsson, J.F.; Green, P.H.R. Celiac disease and non-celiac gluten sensitivity. Autoimmune Dis. 2015, 351, h4347. [Google Scholar] [CrossRef]
- Abbas, A.; Lichtman, A.; Pillai, S. Cellular and Molecular Immunology; Elsevier: Philadelphia, PA, USA, 2018. [Google Scholar]
- Kivity, S.; Agmon-Levin, N.; Blank, M.; Shoenfeld, Y. Infections and autoimmunity: Friends or foes? Trends Immunol. 2009, 30, 409–414. [Google Scholar] [CrossRef]
- Rose, N. Introduction. In Infection and Autoimmunity; Shoenfeld, Y., Agmon-Levin, N., Rose, N., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 1–12. [Google Scholar]
- Richardson, S.J.; Willcox, A.; Bone, A.J.; Foulis, A.K.; Morgan, N.G. The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 2009, 52, 1143–1151. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, M.; Agmon-Levin, N.; Amital, H.; Shoenfeld, Y. Infections and autoimmune diseases: An interplay of pathogenic and protective links. In Infection and Autoimmunity; Shoenfeld, Y., Agmon-Levin, N., Rose, N., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 13–23. [Google Scholar]
- Lidar, M.; Lipschitz, N.; Agmon-Levin, N.; Langevitz, P.; Barzilai, O.; Ram, M.; Porat-Katz, B.S.; Bizzaro, N.; Damoiseaux, J.; Tervaert, J.W.; et al. Infectious serologies and autoantibodies in hepatitis C and autoimmune disease-associated mixed cryoglobulinemia. Clin. Rev. Allergy Immunol. 2012, 42, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Fabrizi, F.; Dixit, V.; Messa, P. Antiviral therapy of symptomatic HCV-associated mixed cryoglobulinemia: Meta-analysis of clinical studies. J. Med. Virol. 2013, 85, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Harley, J.B.; Chen, X.; Pujato, M.; Miller, D.; Maddox, A.; Forney, C.; Magnusen, A.F.; Lynch, A.; Chetal, K.; Yukawa, M.; et al. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat. Genet. 2018, 50, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Afrasiabi, A.; Parnell, G.P.; Fewings, N.; Schibeci, S.D.; Basuki, M.A.; Chandramohan, R.; Zhou, Y.; Taylor, B.; Brown, D.A.; Swaminathan, S.; et al. Evidence from genome wide association studies implicates reduced control of Epstein-Barr virus infection in multiplesclerosis susceptibility. Genome Med. 2019, 11, 26–38. [Google Scholar] [CrossRef]
- Li, Z.X.; Zeng, S.; Wu, H.X.; Zhou, Y. The risk of systemic lupus erythematosus associated with Epstein–Barr virus infection: A systematic review and meta-analysis. Clin. Exp. Med. 2019, 19, 23–36. [Google Scholar] [CrossRef]
- Strachan, D.P. Hay fever, hygiene, and household size. BMJ 1989, 229, 1259–1260. [Google Scholar] [CrossRef]
- Davies, T.F. Infection and autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 2008, 93, 674–676. [Google Scholar] [CrossRef]
- Navegantes, K.C.; de Souza Gomes, R.; Pereira, P.A.T.; Czaikoski, P.G.; Azevedo, C.H.M.; Monteiro, M.C. Immune modulation of some autoimmune diseases: The critical role of macrophages and neutrophils in the innate and adaptive immunity. J. Transl. Med. 2017, 15, 36. [Google Scholar] [CrossRef]
- Ma, W.T.; Gao, F.; Gu, K.; Chen, D.K. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front. Immunol. 2019, 10, 1140. [Google Scholar] [CrossRef] [Green Version]
- McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. New Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef]
- Iwami, S.; Takeuchi, Y.; Miura, Y.; Sasaki, T.; Kajiwara, T. Dynamical properties of autoimmune disease models: Tolerance, flare-up, dormancy. J. Theor. Biol. 2007, 246, 646–659. [Google Scholar] [CrossRef]
- Iwami, S.; Takeuchi, Y.; Iwamoto, K.; Naruo, Y.; Yasukawa, T. A mathematical design of vector vaccine against autoimmune disease. J. Theor. Biol. 2009, 256, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, D.; Kerr, E.; Jepps, O.; Nicholson, L. Modelling experimental uveitis: Barrier effects in autoimmune disease. Inflamm. Res. 2012, 61, 759–773. [Google Scholar] [CrossRef] [PubMed]
- Delitala, M.; Dianzani, U.; Lorenzi, T.; Melensi, M. A mathematical model for immune and autoimmune response mediated by T-cells. Comput. Math. Appl. 2013, 66, 1010–1023. [Google Scholar] [CrossRef]
- Landmann, S.; Preuss, N.; Behn, U. Self-tolerance and autoimmunity in a minimal model of the idiotypic network. J. Theor. Biol. 2017, 426, 17–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, A.K.; Roy, P.K.; Grigorieva, E. Mathematical insights on psoriasis regulation: Role of Th1 and Th2 cells. Math. Biosci. Eng. 2018, 15, 717–738. [Google Scholar] [Green Version]
- Sakaguchi, S.; Wing, K.; Miyara, M. Regulatory T cells: A brief history and perspective. Eur. J. Immunol. 2007, 37, S116–S123. [Google Scholar] [CrossRef]
- Romanczuk, P.; Bar, M.; Ebeling, W.; Linder, B.; Schimansky-Geier, L. Active Brownian particles, from individual to collective stochastic dynamics. Eur. Phys. J. 2012, 202, 1–162. [Google Scholar]
- Bianca, C.; Bellomo, N. Towards a Mathematical Theory of Multiscale Complex Biological Systems; World Scientific: Singapore, 2011. [Google Scholar]
- Bellomo, N.; Brezzi, F. Challenges in active particles methods: Theory and applications. Math. Model. Methods Appl. Sci. 2018, 28, 1627–1633. [Google Scholar] [CrossRef]
- Bellomo, N.; Brezzi, F. Towards a multiscale vision of active particles. Math. Model. Methods Appl. Sci. 2019, 29, 581–588. [Google Scholar] [CrossRef]
- Bianca, C. Thermostatted kinetic equations as models for complex systems in physics and life sciences. Phys. Life Rev. 2012, 9, 359–399. [Google Scholar] [CrossRef] [PubMed]
- Bianca, C. Modeling complex systems by functional subsystems representation and thermostatted-KTAP methods. Appl. Math. Inf. Sci. 2012, 6, 495–499. [Google Scholar]
- Bellomo, N.; Bianca, C.; Delitala, M. Complexity analysis and mathematical tools towards the modelling of living systems. Phys. Life Rev. 2009, 6, 144–175. [Google Scholar] [CrossRef] [PubMed]
- Degond, P.; Pareschi, L.; Russo, G. (Eds.) Modeling and Computational Methods for Kinetic Equations; Springer Science+Bussiness Media: New York, NY, USA, 2004; pp. 219–258. [Google Scholar]
- Bianca, C.; Dogbe, C. On the Boltzmann gas mixture equation: Linking the kinetic and fluid regimes. Commun. Nonlinear Sci. Numer. Simulat. 2015, 29, 240–256. [Google Scholar] [CrossRef] [Green Version]
- Schiavo, M.L. The modelling of political dynamics by generalized kinetic (Boltzmann) models. Math. Comput. Model. 2003, 37, 261–281. [Google Scholar] [CrossRef]
- Bertotti, M.L.; Delitala, M. Conservation laws and asymptotic behavior of a model of social dynamics. Nonlinear Anal. Real World Appl. 2008, 9, 183–196. [Google Scholar] [CrossRef]
- Ajmone Marsan, G.; Bellomo, N.; Gibelli, L. Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics. Math. Model. Methods Appl. Sci. 2016, 26, 1051–1093. [Google Scholar] [CrossRef]
- Dolfin, M.; Leonida, L.; Outada, N. Modelling human behaviour in economics and social science. Phys. Life Rev. 2017, 22–23, 1–21. [Google Scholar] [CrossRef]
- Bellomo, N.; Brezzi, F.; Pulvirenti, M. Modeling behavioral social systems. Math. Model. Methods Appl. Sci. 2017, 27, 1–11. [Google Scholar] [CrossRef]
- Bianca, C.; Kombargi, A. On the inverse problem for thermostatted kinetic models with application to the financial market. Appl. Math. Inf. Sci. 2017, 11, 1463–1471. [Google Scholar] [CrossRef]
- Bianca, C.; Kombargi, A. On the modeling of the stock market evolution by means of the information-thermostatted kinetic theory. Nonlinear Stud. 2017, 24, 935–944. [Google Scholar]
- Bellomo, N.; Carbonaro, B. On the complexity of multiple interactions with additional reasoning about Kate, Jules and Jim. Math. Comput. Model. 2008, 47, 168–177. [Google Scholar] [CrossRef]
- Bellomo, N.; Bianca, C.; Coscia, V. On the modeling of crowd dynamics: An overview and research perspectives. Bol. Soc. Esp. Mat. Apl. 2011, 54, 25–46. [Google Scholar] [CrossRef]
- Bellomo, N.; Bellouquid, A. On multiscale models of pedestrian crowds - from mesoscopic to macroscopic. Commun. Math. Sci. 2015, 13, 1649–1664. [Google Scholar] [CrossRef]
- Bellomo, N.; Gibelli, L. Toward a mathematical theory of behavioural-social dynamics for pedestrian crowds. Math. Model. Methods Appl. Sci. 2015, 25, 2417–2437. [Google Scholar] [CrossRef]
- Elaiw, A.; Al-Turki, Y.; Alghamdi, M. A critical analysis of behavioural crowd dynamics—From a modelling strategy to kinetic theory methods. Symmetry 2019, 11, 851. [Google Scholar] [CrossRef]
- Bellomo, N.; Gibelli, L. Behavioral human crowds. In Crowd Dynamics, Volume 1—Theory, Models, and Safety Problems. Modeling and Simulation in Science, Engineering, and Technology; Bellomo, N., Gibelli, L., Eds.; Birkhäuser: New York, NY, USA, 2018; pp. 1–14. [Google Scholar]
- Bellomo, N.; Gibelli, L.; Outada, N. On the interplay between behavioral dynamics and social interactions in human crowds. Kinet. Relat. Mod. 2019, 12, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Cucker, F.; Smale, S. Emergent behavior in flocks. IEEE Trans. Automat. Control 2007, 52, 852–862. [Google Scholar] [CrossRef]
- Ha, S.-Y.; Tadmor, E. From particle to kinetic and hydrodynamic description of flocking. Kinet. Relat. Model. 2008, 1, 415–435. [Google Scholar]
- Bellomo, N.; Bellouquid, A.; Gibelli, L.; Outada, N. A Quest Towards a Mathematical Theory of Living Systems; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Bellomo, N.; Ha, S.-Y. A quest toward a mathematical theory of the dynamics of swarms. Math. Model. Methods Appl. Sci. 2017, 27, 745–770. [Google Scholar] [CrossRef]
- Degond, P.; Frouvelle, A.; Merino-Aceituno, S. A new flocking model through body attitude coordination. Math. Model. Methods Appl. Sci. 2017, 27, 1005–1049. [Google Scholar] [CrossRef] [Green Version]
- Lachowicz, M.; Leszczynski, H.; Parisot, M. Blow-up and global existence for a kinetic equation of swarm formation. Math. Model. Methods Appl. Sci. 2017, 27, 1153–1175. [Google Scholar] [CrossRef] [Green Version]
- Poyato, D.; Soler, J. Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker–Smale models. Math. Model. Methods Appl. Sci. 2017, 27, 1089–1152. [Google Scholar] [CrossRef]
- Delitala, M.; Tosin, A. Mathematical modelling of vehicular traffic: A discrete kinetic theory approach. Math. Model. Methods Appl. Sci. 2007, 17, 901–932. [Google Scholar] [CrossRef]
- Klar, A.; Wegener, R. Traffic flow: Models and numerics. In Modeling and Computational Methods for Kinetic Equations; Degond, P., Pareschi, L., Russo, G., Eds.; Springer Science+Bussiness Media: New York, NY, USA, 2004; pp. 219–258. [Google Scholar]
- Bianca, C.; Coscia, V. On the coupling of steady and adaptive velocity grids in vehicular traffic modelling. Appl. Math. Lett. 2011, 24, 149–155. [Google Scholar] [CrossRef]
- Bianca, C. Mathematical modeling of crowds dynamics: Complexity and kinetic approach. Nonlinear Stud. 2012, 19, 345–354. [Google Scholar]
- Bianca, C.; Dogbe, C. A mathematical model for crowd dynamics: Multiscale analysis, fluctuations and random noise. Nonlinear Stud. 2013, 20, 281–305. [Google Scholar]
- Bianca, C.; Mogno, C. A thermostatted kinetic theory model for event-driven pedestrian dynamics. Eur. Phys. J. Plus 2018, 133, 213. [Google Scholar] [CrossRef]
- Bianca, C.; Mogno, C. Modelling pedestrian dynamics into a metro station by thermostatted kinetic theory methods. Math. Comput. Model. Dyn. Syst. 2018, 24, 207–235. [Google Scholar] [CrossRef]
- Bianca, C. Mathematical modelling for keloid formation triggered by virus: Malignant effects and immune system competition. Math. Model. Methods Appl. Sci. 2011, 21, 389–419. [Google Scholar] [CrossRef]
- Bianca, C.; Fermo, L. Bifurcation diagrams for the moments of a kinetic type model of keloid-immune system competition. Comput. Math. Appl. 2011, 61, 277–288. [Google Scholar] [CrossRef]
- Bianca, C.; Delitala, M. On the modelling of genetic mutations and immune system competition. Comput. Math. Appl. 2011, 61, 2362–2375. [Google Scholar] [CrossRef] [Green Version]
- Bianca, C.; Riposo, J. Mimic therapeutic actions against keloid by thermostatted kinetic theory methods. Eur. Phys. J. Plus 2015, 130, 159. [Google Scholar] [CrossRef]
- Ben Amar, M.; Bianca, C. Towards a unified approach in the modelling of fibrosis: A review with research perspectives. Phys. Life Rev. 2016, 16, 61–85. [Google Scholar]
- Ben Amar, M.; Bianca, C. Multiscale modeling of fibrosis—What’s next? Phys. Life Rev. 2016, 16, 118–123. [Google Scholar]
- Bianca, C. How do mutative events modify moments evolution in thermostatted kinetic models? Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 2155–2159. [Google Scholar] [CrossRef]
- Bianca, C.; Dogbe, C.; Lemarchand, A. Mimic therapeutic actions against keloid by thermostatted kinetic theory methods. Eur. Phys. J. Plus 2016, 131, 41. [Google Scholar] [CrossRef]
- Bianca, C.; Lemarchand, A. Miming the cancer-immune system competition by kinetic Monte Carlo simulations. J. Chem. Phys. 2016, 145, 154108. [Google Scholar] [CrossRef]
- Masurel, L.; Bianca, C.; Lemarchand, A. On the learning control effects in the cancer-immune system competition. Phys. A Stat. Mech. Its Appl. 2018, 506, 462–475. [Google Scholar] [CrossRef] [Green Version]
- Aylaj, B. Qualitative analysis and simulation of a nonlinear integro-differential system modeling tumor-immune cells competition. Int. J. Biomath. 2018, 11, 1850104. [Google Scholar] [CrossRef]
- Bianca, C.; Lemarchand, A. Density evolution by the low-field limit of kinetic frameworks with thermostat and mutations. Commun. Nonlinear Sci. Numer. Simul. 2015, 20, 14–23. [Google Scholar] [CrossRef]
- Bianca, C.; Brezin, L. Modeling the antigen recognition by B-cell and T-cell receptors through thermostatted kinetic theory methods. Int. J. Biomath. 2017, 10, 1750072. [Google Scholar] [CrossRef]
- Bianca, C. Kinetic theory for active particles modelling coupled to Gaussian thermostats. Appl. Math. Sci. 2012, 6, 651–660. [Google Scholar]
- Bianca, C. An existence and uniqueness theorem for the Cauchy problem for thermostatted-KTAP models. Int. J. Math. Anal. 2012, 6, 813–824. [Google Scholar]
- Bianca, C. Thermostatted kinetic models for complex systems under microscopic external fields. Math. Eng. Sci. Aerosp. 2012, 3, 225–238. [Google Scholar]
- Bianca, C. Onset of nonlinearity in thermostatted active particles models for complex systems. Nonlinear Anal. Real World Appl. 2012, 13, 2593–2608. [Google Scholar] [CrossRef]
- Bianca, C. Thermostatted models - Multiscale analysis and tuning with real-world systems data. J. Appl. Comput. Math. 2012, 9, 418–425. [Google Scholar] [CrossRef]
- Bianca, C.; Ferrara, M.; Guerrini, L. Thermostatted models - Multiscale analysis and tuning with real-world systems data. J. Glob. Optim. 2014, 58, 389–404. [Google Scholar] [CrossRef]
- Bianca, C.; Dogbe, C. Kinetic models coupled with Gaussian thermostats: Macroscopic frameworks. Nonlinearity 2014, 27, 2771–2803. [Google Scholar] [CrossRef]
- Bianca, C.; Menale, M. Existence and uniqueness of nonequilibrium stationary solutions in discrete thermostatted models. Commun. Nonlinear Sci. Numer. Simulat. 2019, 73, 25–34. [Google Scholar] [CrossRef]
- Bianca, C.; Menale, M. On the interaction domain reconstruction in the weighted thermostatted kinetic framework. Eur. Phys. J. Plus 2019, 134, 143. [Google Scholar] [CrossRef]
- Jäger, E.; Segel, L. On the distribution of dominance in a population of interacting anonymous organisms. SIAM J. Appl. Math. 1992, 52, 1442–1468. [Google Scholar] [CrossRef]
- Kolev, M.; Nikolova, I. A mathematical model of some viral-induced autoimmune diseases. Math. Appl. 2018, 46, 97–108. [Google Scholar]
- Shampine, L.F.; Reichelt, M.W. The Matlab ODE suite. SIAM J. Sci. Comput. 1997, 18, 1–22. [Google Scholar] [CrossRef]
- Vadasz, Z.; Toubi, E. Acute and chronic infections: Their role in immune thrombocytopenia. In Infection and Autoimmunity; Shoenfeld, Y., Agmon-Levin, N., Rose, N., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 859–876. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolev, M. Mathematical Analysis of an Autoimmune Diseases Model: Kinetic Approach. Mathematics 2019, 7, 1024. https://doi.org/10.3390/math7111024
Kolev M. Mathematical Analysis of an Autoimmune Diseases Model: Kinetic Approach. Mathematics. 2019; 7(11):1024. https://doi.org/10.3390/math7111024
Chicago/Turabian StyleKolev, Mikhail. 2019. "Mathematical Analysis of an Autoimmune Diseases Model: Kinetic Approach" Mathematics 7, no. 11: 1024. https://doi.org/10.3390/math7111024