Generalized Integral Inequalities for Hermite–Hadamard-Type Inequalities via s-Convexity on Fractal Sets
Abstract
:1. Introduction
2. Main Results
- (i)
- on .
- (ii)
- We have the following inequality:
- (iii)
- We have the following inequality:
- (iv)
- If , then we have
- (i)
- Let and with , then
- (ii)
- Assume that . Then by the change of variables and , we haveApplying the first generalized Hermite–Hadamard inequality, we obtainIf , the inequality
- (iii)
- Applying the second generalized Hermite–Hadamard inequality, we obtainPlease note that if , then the inequality
- (iv)
- We haveSince
- (i)
- (ii)
- Since
- (i)
- If , then
- (ii)
- If , then
- (iii)
- If and
- (iv)
- If and then
3. Applications to Special Means
- The arithmetic mean:; with
- The logarithmic mean:; with
- The generalized logarithmic mean:; , with
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, X.M. On E-convex sets, E-convex functions, and E-convex programming. J. Optim. Theory Appl. 2001, 109, 699–704. [Google Scholar] [CrossRef]
- Hudzik, H.; Maligranda, L. Some remarks ons-convex functions. Aequ. Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Almutairi, O.; Kılıçman, A. New refinements of the Hadamard inequality on coordinated convex function. J. Inequal. Appl. 2019, 1, 192. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, C. Selected topics on Hermite-Hadamard inequalities and applications. Math. Prepr. Arch. 2003, 3, 463–817. [Google Scholar]
- Agarwal, P.; Jleli, M.; Tomar, M. Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals. J. Inequal. Appl. 2017, 1, 55. [Google Scholar] [CrossRef] [PubMed]
- Jhanthanam, S.; Tariboon, J.; Ntouyas, S.K.; Nonlaopon, K. On q-Hermite-Hadamard Inequalities for Differentiable Convex Functions. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard inequalities for s-convex functions in the second sense. Demonstr. Math. 1999, 32, 687–696. [Google Scholar] [CrossRef]
- Almutairi, O.; Kılıçman, A. New fractional inequalities of midpoint type via s-convexity and their application. J. Inequal. Appl. 2019, 1, 1–19. [Google Scholar] [CrossRef]
- Chen, F. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Chin. J. Math. 2014, 92, 2241–2253. [Google Scholar] [CrossRef]
- Sarıkaya, M.Z. On the Hermite–Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integr. Transform. Spec. Funct. 2014, 25, 134–147. [Google Scholar] [CrossRef]
- Qaisar, S.; Nasir, J.; Butt, S.I.; Hussain, S. On Some Fractional Integral Inequalities of Hermite-Hadamard’s Type through Convexity. Symmetry 2019, 11, 137. [Google Scholar] [CrossRef]
- Set, E.; Karaoglan, A. Hermite-Hadamard and Hermite-Hadamard-Fejer Type Inequalities for (k, h)-Convex Function via Katugampola Fractional Integrals. Konuralp J. Math. 2017, 5, 181–191. [Google Scholar]
- Sun, W. On generalization of some inequalities for generalized harmonically convex functions via local fractional integrals. Quaest. Math. 2018, 1–25. [Google Scholar] [CrossRef]
- Abbas, G.; Farid, G. Some integral inequalities for m-convex functions via generalized fractional integral operator containing generalized Mittag-Leffler function. Cogent Math. Stat. 2016, 3, 1269589. [Google Scholar] [CrossRef]
- Kılınc, S.; Akkurt, A.; Yildirim, H. Generalization Mittag-Leffer Function Associated with of the Hadamard and Fejer Hadamard Inequalities for (h-m)-Stronly convex Functions via Fractional Integrals. J. Univ. Math. 2019, 2, 8–15. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Mo, H.; Sui, X. Generalized-convex functions on fractal sets. Abstr. Appl. Anal. 2014, 2014, 254737. [Google Scholar] [CrossRef]
- Kilbas, A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2014; Volume 204. [Google Scholar]
- Wang, J.; Li, X.; Zhou, Y. Hermite-Hadamard Inequalities Involving Riemann-Liouville Fractional Integrals via s-convex Functions and Applications to Special Means. Filomat 2016, 30, 1143–1150. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Merve, A.A.; Kavurmaci-Önalan, H. Hermite-Hadamard type inequalities for s-convex and s-concave functions via fractional integrals. Turk. J. Sci. 2016, 1, 28–40. [Google Scholar]
- Işcan, I. Generalization of different type integral inequalities for s-convex functions via fractional integrals. Appl. Anal. 2014, 93, 1846–1862. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, O.; Kılıçman, A. Generalized Integral Inequalities for Hermite–Hadamard-Type Inequalities via s-Convexity on Fractal Sets. Mathematics 2019, 7, 1065. https://doi.org/10.3390/math7111065
Almutairi O, Kılıçman A. Generalized Integral Inequalities for Hermite–Hadamard-Type Inequalities via s-Convexity on Fractal Sets. Mathematics. 2019; 7(11):1065. https://doi.org/10.3390/math7111065
Chicago/Turabian StyleAlmutairi, Ohud, and Adem Kılıçman. 2019. "Generalized Integral Inequalities for Hermite–Hadamard-Type Inequalities via s-Convexity on Fractal Sets" Mathematics 7, no. 11: 1065. https://doi.org/10.3390/math7111065
APA StyleAlmutairi, O., & Kılıçman, A. (2019). Generalized Integral Inequalities for Hermite–Hadamard-Type Inequalities via s-Convexity on Fractal Sets. Mathematics, 7(11), 1065. https://doi.org/10.3390/math7111065