Space of Quasi-Periodic Limit Functions and Its Applications
Abstract
:1. Introduction
2. Space of Quasi-Periodic Limit Functions
- (1)
- is the -quasi-periodic limit;
- (2)
- is the -quasi-periodic limit for any ;
- (3)
- , for each pair ;
- (4)
- g and h are bounded on ; moreover, and ;
- (5)
- F is bounded on ; moreover, .
- (1)
- Assume H1 holds, then is well defined for each pair .
- (2)
- Assume H2 holds, then is well defined for each pair .
- (3)
- Assume H1 and H2 hold, then .
- (4)
- Assume H1 and H2 hold, then .
- (1)
- uniformly for and ;
- (2)
- uniformly for and ;
- (3)
- ;
- (4)
- .
3. Existence of Asymptotically Quasi-Periodic Solutions of Abstract Cauchy Problems
4. Some Remarks and Questions
Author Contributions
Funding
Conflicts of Interest
References
- Bohl, P. Über eine Differentialgleichung der Störungstheorie. J. Reine Angew. Math. 1906, 131, 231–268. [Google Scholar]
- Hagihara, Y. Piers Bohls Work on Celestial Mechanics; Smithsonian Institution, Astrophysical Observatory: Cambridge, MA, USA, 1967. [Google Scholar]
- Besicovitch, A.S. Almost Periodic Functions; Cambridge University Press: Cambridge, UK, 1932. [Google Scholar]
- Kuksin, S. Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funct. Anal. Its Appl. 1987, 21, 192–205. [Google Scholar] [CrossRef]
- Wayne, E. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 1990, 127, 479–528. [Google Scholar] [CrossRef]
- Bourgain, J. Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math. 1998, 148, 363–439. [Google Scholar] [CrossRef]
- Pöschel, J. A KAM-theorem for some nonlinear partial differential equations. Annali Scuola Normale Superiore di Pisa-Classe di Scienze 1996, 23, 119–148. [Google Scholar]
- Geng, J.; Xu, X.; You, J. An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv. Math. 2011, 226, 5361–5402. [Google Scholar] [CrossRef]
- Procesi, C.; Procesi, M. A normal form for the Schrödinger equation with analytic non-linearities. Commun. Math. Phys. 2012, 312, 501–557. [Google Scholar] [CrossRef]
- Mi, L.; Zhang, K. Quasi-periodic solutions for perturbed generalized KdV equation. Nonlinear Anal. 2016, 32, 314–337. [Google Scholar] [CrossRef]
- Zhang, M. Quasi-periodic solutions of two dimensional Schrödinger equations with Quasi-periodic forcing. Nonlinear Anal. 2016, 135, 1–34. [Google Scholar] [CrossRef]
- Giuliani, F. Quasi-periodic solutions for quasi-linear generalized KdV equations. J. Differ. Equ. 2017, 262, 5052–5132. [Google Scholar] [CrossRef]
- Baldi, P.; Berti, M.; Montalto, R. KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. Henri Poincaré Anal. Non Linéaire 2016, 33, 1589–1638. [Google Scholar] [CrossRef]
- Lou, Z.; Geng, J. Quasi-periodic response solutions in forced reversible systems with Liouvillian frequencies. J. Differ. Equ. 2017, 263, 3894–3927. [Google Scholar] [CrossRef]
- Chen, B.; Gao, Y.; Jiang, S.; Li, Y. Quasi-periodic solutions to nonlinear beam equations on compact Lie groups with a multiplicative potential. J. Differ. Equ. 2018, 264, 6959–6993. [Google Scholar] [CrossRef]
- Wang, Y. Quasi-periodic solutions for a completely resonant beam equation with a nonlinear term depending on the time and space variables. Nonlinear Anal. 2019, 189, 111585. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, J. Quasi-periodic solutions for a class of beam equation system. Discret. Cont. Dyn. B 2020, 25, 31–53. [Google Scholar] [CrossRef]
- Küpper, T.; Yuan, R. On quasi-periodic solutions of differential equations with piecewise constant argument. J. Math. Anal. Appl. 2002, 267, 173–193. [Google Scholar] [CrossRef]
- Shi, G.; Yan, D. Quasi-periodic solutions for nonlinear wave equation with singular Legendre potential. Bound. Value Probl. 2019, 1, 108. [Google Scholar] [CrossRef]
- Ragusa, M.A. Cauchy-Dirichlet problem associated to divergence form parabolic equations. Commun. Contemp. Math. 2004, 6, 377–393. [Google Scholar] [CrossRef]
- Xie, R.; Zhang, C. Space of ω-periodic limit functions and its applications to an abstract Cauchy problem. J. Funct. Spaces 2015, 2015, 953540. [Google Scholar] [CrossRef]
- Manou-Abi, S.M.; Dimbour, W. Asymptotically periodic solution of a stochastic differential equation. Bull. Malays. Math. Sci. Soc. 2019, 1–29. [Google Scholar] [CrossRef]
- Dimbour, W.; Mawaki, S. Asymptotically ω-periodic solutions for an evolution differential equation via ω-periodic limit functions. J. Pure Appl. Math. 2017, 113, 59–71. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, R.; Xia, Z.; Liu, J. Space of Quasi-Periodic Limit Functions and Its Applications. Mathematics 2019, 7, 1132. https://doi.org/10.3390/math7111132
Xie R, Xia Z, Liu J. Space of Quasi-Periodic Limit Functions and Its Applications. Mathematics. 2019; 7(11):1132. https://doi.org/10.3390/math7111132
Chicago/Turabian StyleXie, Rui, Zhinan Xia, and Junwei Liu. 2019. "Space of Quasi-Periodic Limit Functions and Its Applications" Mathematics 7, no. 11: 1132. https://doi.org/10.3390/math7111132
APA StyleXie, R., Xia, Z., & Liu, J. (2019). Space of Quasi-Periodic Limit Functions and Its Applications. Mathematics, 7(11), 1132. https://doi.org/10.3390/math7111132