An Inverse Problem for a Generalized Fractional Derivative with an Application in Reconstruction of Time- and Space-Dependent Sources in Fractional Diffusion and Wave Equations
Abstract
:1. Introduction
2. Problem Formulation
2.1. Generalized Fractional Derivatives
2.2. Formulation of Inverse Problems
3. Results in Case of General k
3.1. Uniqueness Results
- (i)
- If , and , then .
- (ii)
- If and , then .
3.2. Reduction to Integral Equations
4. Solution Formulas in Particular Cases of k
4.1. A Basic Theorem
4.2. Solution Formulas in Case of Usual Fractional Derivatives
- (i)
- If , and u solves IP1 with , then
- (ii)
- If , , solves IP1 with , then
- (i)
- If solves IP2 with , then
- (ii)
- If , solves IP2 with , then
4.3. Solution Formulas in Case of Tempered and Atangana–Baleanu Derivatives
- (i)
- If , and u solves IP1 with , then
- (ii)
- If solves IP1 with , then
- (i)
- If and u solves IP1 with , then
- (ii)
- If and u solves IP1 with , thenHere, is the unity operator.
- (i)
- If and u solves IP1 with , then
- (ii)
- If and u solves IP1 with , then
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Janno, J.; Kasemets, K. Identification of a kernel in an evolutionary integral equation occurring in subdiffusion. J. Inverse Ill-Posed Probl. 2017, 25, 777–798. [Google Scholar] [CrossRef]
- Kinash, N.; Janno, J. Inverse problems for a generalized subdiffusion equation with final overdetermination. Math. Model. Anal. 2019, 24, 236–262. [Google Scholar]
- Kochubei, A.N. General fractional calculus, evolution equations, and renewal processes. Integr. Equ. Oper. Theory 2011, 71, 583–600. [Google Scholar] [CrossRef]
- Luchko, Y.; Yamamoto, M. General time-fractional diffusion equation: Some uniqueness and existence results for the initial-boundary-value problems. Fract. Calc. Appl. Anal. 2016, 19, 676–695. [Google Scholar] [CrossRef]
- Janno, J.; Kinash, N. Reconstruction of an order of derivative and a source term in a fractional diffusion equation from final measurements. Inverse Probl. 2018, 34, 025007. [Google Scholar] [CrossRef]
- Jin, B.; Rundell, W. A tutorial on inverse problems for anomalous diffusion processes. Inverse Probl. 2015, 31, 035003. [Google Scholar] [CrossRef]
- Kinash, N.; Janno, J. Inverse problems for a perturbed time fractional diffusion equation with final overdetermination. Math. Meth. Appl. Sci. 2018, 41, 1925–1943. [Google Scholar] [CrossRef]
- Kirane, M.; Malik, A.S.; Al-Gwaiz, M.A. An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions. Math. Meth. Appl. Sci. 2013, 36, 1056–1069. [Google Scholar] [CrossRef]
- Slodička, M.; Šiškova, K.; Van Bockstal, K. Uniqueness for an inverse source problem of determining a space dependent source in a time-fractional diffusion equation. Appl. Math. Lett. 2019, 91, 15–21. [Google Scholar] [CrossRef]
- Wei, T.; Sun, L.; Li, Y. Uniqueness for an inverse space-dependent source term in a multi-dimensional time-fractional diffusion equation. Appl. Math. Lett. 2016, 61, 108–113. [Google Scholar] [CrossRef]
- Lopushanska, H.; Lopushansky, A. Inverse problem with a time-integral condition for a fractional diffusion equation. Math. Meth. Appl. Sci. 2019, 42, 3327–3340. [Google Scholar] [CrossRef]
- Šiškova, K.; Slodička, M. A source identification problem in a time-fractional wave equation with a dynamical boundary condition. Comput. Math. Appl. 2018, 75, 4337–4354. [Google Scholar] [CrossRef]
- Kian, Y.; Yamamoto, M. Reconstruction and stable recovery of source terms and coefficients appearing in diffusion equations. Inverse Probl. 2019, 35, 115006. [Google Scholar] [CrossRef]
- Konjik, S.; Oparnica, L.; Zorica, D.Z. Distributed-order fractional constitutive stress–strain relation in wave propagation modeling. Angew. Math. Phys. 2019, 70, 1–21. [Google Scholar] [CrossRef]
- Mainardi, F.; Mura, A.; Pagnini, G.; Gorenflo, R. Time-fractional diffusion of distributed order. J. Vib. Control 2008, 14, 1267–1290. [Google Scholar] [CrossRef]
- Sokolov, I.M.; Chechkin, A.V.; Klafter, J. Distributed order fractional kinetics. Acta Phys. Pol. B 2004, 35, 1323–1341. [Google Scholar]
- Sibatov, R.T.; Uchaikin, V.V. Truncated Levy statistics for dispersive transport in disordered semiconductors. Commun. Nonlinear Sci. Numer. Simulat. 2011, 16, 4564–4571. [Google Scholar] [CrossRef]
- Wu, X.; Deng, W.; Barkai, E. Tempered fractional Feynman-Kac equation: Theory and examples. Phys. Rev. E 2016, 93, 032151. [Google Scholar] [CrossRef]
- Gajda, J.; Magdziarz, M. Fractional Fokker-Planck equation with tempered α-stable waiting times: Langevin picture and computer simulation. Phys. Rev. E 2010, 82, 011117. [Google Scholar] [CrossRef]
- Atangana, A.; Alkahtani, B.S.T. Analysis of the Keller–Segel Model with a Fractional Derivative without Singular Kernel. Entropy 2015, 17, 4439–4453. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Atangana, A. On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation. Appl. Math. Comput. 2016, 273, 948–956. [Google Scholar] [CrossRef]
- Gomez-Aguilar, J.F.; Escobar-Jimenez, R.F.; Lopez-Lopez, M.G.; Alvarado-Martinez, V.M. Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media. J. Electromagn. Waves Appl. 2016, 30, 1937–1952. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; World Scientific: Singapore, 2010. [Google Scholar]
- Povstenko, Y. Fractional heat conduction and associated thermal stress. J. Therm. Stress. 2004, 28, 83–102. [Google Scholar] [CrossRef]
- Luchko, Y. Fractional wave equation and damped waves. J. Math. Phys. 2013, 54, 031505. [Google Scholar] [CrossRef]
- Hanyga, A. Multidimensional solutions of time-fractional diffusion-wave equations. Proc. R. Soc. Lond. A 2002, 458, 933–957. [Google Scholar] [CrossRef]
- Feng, Y.; Graef, J.R.; Kong, L.; Wang, M. The forward and inverse problems for a fractional boundary value problem. Appl. Anal. 2018, 97, 2474–2484. [Google Scholar] [CrossRef]
- Straka, P.; Meerschaert, M.M.; McGough, R.J.; Zhou, Y. Fractional wave equations with attenuation. Fract. Calc. Appl. Anal. 2013, 16, 262–272. [Google Scholar] [CrossRef]
- Baeumer, B.; Kurita, S.; Meerschaert, M.M. Inhomogeneous fractional diffusion equations. Fract. Calc. Appl. Anal. 2005, 8, 371–386. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: New York, NY, USA, 2014. [Google Scholar]
- Jones, F. Lebesgue Integration on Euclidean Space; Jones and Bartlett Publishers: London, UK, 2001. [Google Scholar]
- Pollard, H. The Convergence Almost Everywhere of Legendre Series. Proc. Am. Math. Soc 1972, 35, 442–444. [Google Scholar] [CrossRef]
- Bojanic, R.; Vuilleumier, M. On the rate of convergence of Fourier-Legendre series of functions of bounded variation. J. Approx. Theory 1981, 31, 67–79. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinash, N.; Janno, J. An Inverse Problem for a Generalized Fractional Derivative with an Application in Reconstruction of Time- and Space-Dependent Sources in Fractional Diffusion and Wave Equations. Mathematics 2019, 7, 1138. https://doi.org/10.3390/math7121138
Kinash N, Janno J. An Inverse Problem for a Generalized Fractional Derivative with an Application in Reconstruction of Time- and Space-Dependent Sources in Fractional Diffusion and Wave Equations. Mathematics. 2019; 7(12):1138. https://doi.org/10.3390/math7121138
Chicago/Turabian StyleKinash, Nataliia, and Jaan Janno. 2019. "An Inverse Problem for a Generalized Fractional Derivative with an Application in Reconstruction of Time- and Space-Dependent Sources in Fractional Diffusion and Wave Equations" Mathematics 7, no. 12: 1138. https://doi.org/10.3390/math7121138
APA StyleKinash, N., & Janno, J. (2019). An Inverse Problem for a Generalized Fractional Derivative with an Application in Reconstruction of Time- and Space-Dependent Sources in Fractional Diffusion and Wave Equations. Mathematics, 7(12), 1138. https://doi.org/10.3390/math7121138