Q-rung Orthopair Normal Fuzzy Aggregation Operators and Their Application in Multi-Attribute Decision-Making
Abstract
:1. Introduction
2. Preliminaries
2.1. The Normal Fuzzy Number
- (1)
- ,
- (2)
2.2. The Q-rung Orthopair Fuzzy Number
- (1)
- ,
- (2)
- ,
- (3)
- ,
- (4)
- .
- (1) If , then ;
- (2) If , then
- If, then;
- If, then.
3. The Q-rung Orthopair Normal Fuzzy Number and Its Operations
- (1)
- ,
- (2)
- ,
- (3)
- ,
- (4)
- .
- (1)
- ,
- (2)
- ,
- (3)
- ,
- (4)
- ,
- (5)
- ,
- (6)
- ,
- (7)
- .
- (1) If , then ,
- (2) If and , then ,
- (3) If and ,
- If, then,
- Ifand, then,
- Ifand, then.
4. Q-Rung Orthopair Normal Fuzzy Aggregation Operators
4.1. The q-RONF Weighted Aggregation Operators
4.2. The Q-RONF Ordered Weighted Aggregation Operators
4.3. The Generalized q-RONF Weighted Aggregation Operators
4.4. Generalized q-RONF Ordered Weighted Aggregation Operators
4.5. q-RONF Hybrid Aggregation Operators
5. A Multi-Criteria Decision-Making Method Based on Q-rung Orthopair Normal Fuzzy Information
6. Numerical Example
6.1. Ranking All Alternatives to Get Decision Results
6.2. Comparative Analysis
6.3. Sensitivity Analysis of Parameters q and λ
6.4. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inform. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.; Gargov, G. Interval valued Intuitionistic fuzzy-sets. Fuzzy Sets Syst. 1989, 31, 343–349. [Google Scholar] [CrossRef]
- Wan, S.P.; Xu, G.L.; Wang, F.; Dong, J.Y. A new method for Atanassov’s interval-valued intuitionistic fuzzy MAGDM with incomplete attribute weight information. Inform. Sci. 2015, 316, 329–347. [Google Scholar] [CrossRef]
- Liu, P.D.; Chen, S.M. Multiattribute group decision making based on intuitionistic 2-tuple linguistic information. Inform. Sci. 2018, 430, 599–619. [Google Scholar] [CrossRef]
- Wang, J.Q.; Zhang, Z. Aggregation operators on intuitionistic trapezoidal fuzzy number and its application to multi-criteria decision making problems. J. Syst. Eng. Electron. 2009, 20, 321–326. [Google Scholar]
- Nehi, H.M. A New Ranking Method for Intuitionistic Fuzzy Numbers. Int. J. Fuzzy. Syst. 2010, 12, 80–86. [Google Scholar]
- Wang, J.Q.; Li, K.J.; Zhang, H.Y. Multi-criteria decision-making method based on induced intuitionistic normal fuzzy related aggregation operators. Int. J. Uncertain. Fuzzy. 2012, 20, 559–578. [Google Scholar] [CrossRef]
- Liu, P.D.; Jin, F. Methods for aggregating intuitionistic uncertain linguistic variables and their application to group decision making. Inform. Sci. 2012, 205, 58–71. [Google Scholar] [CrossRef]
- Li, D.F. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems. Comput. Math. Appl. 2010, 60, 1557–1570. [Google Scholar] [CrossRef]
- Li, D.F.; Nan, J.X.; Zhang, M.J. A Ranking Method of Triangular Intuitionistic Fuzzy Numbers and Application to Decision Making. Int. J. Comput. Int. Sys. 2010, 3, 522–530. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 2014, 22, 958–965. [Google Scholar] [CrossRef]
- Yager, R.R.; Abbasov, A.M. Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst. 2013, 28, 436–452. [Google Scholar] [CrossRef]
- Akram, M.; Dar, J.M.; Farooq, A. Planar graphs under Pythagorean fuzzy environment. Mathematics 2018, 6, 278. [Google Scholar] [CrossRef]
- Liang, D.C.; Xu, Z.S.; Liu, D.; Wu, Y. Method for three-way decisions using ideal TOPSIS solutions at Pythagorean fuzzy information. Inform. Sci. 2018, 435, 282–295. [Google Scholar] [CrossRef]
- Deng, X.M.; Wang, J.; Wei, G.W.; Lu, M. Models for multiple attribute decision making with some 2-tuple linguistic Pythagorean fuzzy Hamy mean operators. Mathematics 2018, 6, 236. [Google Scholar] [CrossRef]
- Liu, A.J.; Ji, X.H.; Lu, H.; Liu, H.Y. The selection of 3PRLs on self-service mobile recycling machine: Interval-valued pythagorean hesitant fuzzy best-worst multi-criteria group decision-making. J. Clean. Prod. 2019, 230, 734–750. [Google Scholar] [CrossRef]
- Rahman, K.; Abdullah, S. Some induced generalized interval-valued Pythagorean fuzzy Einstein geometric aggregation operators and their application to group decision-making. Comput. Appl. Math. 2019, 38, 139. [Google Scholar] [CrossRef]
- Tang, M.; Wang, J.; Lu, J.P.; Wei, G.W.; Wei, C.; Wei, Y. Dual hesitant Pythagorean fuzzy Heronian mean operators in multiple attribute decision making. Mathematics 2019, 7, 344. [Google Scholar] [CrossRef]
- Zhang, X.L. Multicriteria Pythagorean fuzzy decision analysis: A hierarchical QUALIFLEX approach with the closeness index-based ranking methods. Inf. Sci. 2016, 330, 104–124. [Google Scholar] [CrossRef]
- Ren, P.J.; Xu, Z.S.; Gou, X.J. Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft. Comput. 2016, 42, 246–259. [Google Scholar] [CrossRef]
- Garg, H. A new generalized pythagorean fuzzy information aggregation using einstein operations and its application to decision making. Int. J. Intell. Syst. 2016, 31, 886–920. [Google Scholar] [CrossRef]
- Zhang, R.T.; Wang, J.; Zhu, X.M.; Xia, M.M.; Yu, M. Some Generalized Pythagorean Fuzzy Bonferroni Mean Aggregation Operators with Their Application to Multiattribute Group Decision-Making. Complexity 2017, 2017, 16. [Google Scholar] [CrossRef]
- Yager, R.R. Generalized Orthopair Fuzzy Sets. IEEE Trans. Fuzzy Syst. 2017, 25, 1222–1230. [Google Scholar] [CrossRef]
- Gao, J.; Liang, Z.L.; Shang, J.; Xu, Z.S. Continuities, Derivatives, and Differentials of q-Rung Orthopair Fuzzy Functions. IEEE Trans. Fuzzy Syst. 2019, 27, 1687–1699. [Google Scholar] [CrossRef]
- Peng, X.D.; Dai, J.G.; Garg, H. Exponential operation and aggregation operator for q-rung orthopair fuzzy set and their decision-making method with a new score function. Int. J. Intell. Syst. 2018, 33, 2255–2282. [Google Scholar] [CrossRef]
- Du, W.S. Research on arithmetic operations over generalized orthopair fuzzy sets. Int. J. Intell. Syst. 2019, 34, 709–732. [Google Scholar] [CrossRef]
- Peng, X.D.; Dai, J.G. Research on the assessment of classroom teaching quality with q-rung orthopair fuzzy information based on multiparametric similarity measure and combinative distance-based assessment. Int. J. Intell. Syst. 2019, 34, 1588–1630. [Google Scholar] [CrossRef]
- Wang, P.; Wang, J.; Wei, G.W.; Wei, C. Similarity measures of q-rung orthopair fuzzy sets based on cosine function and their applications. Mathematics 2019, 7, 340. [Google Scholar] [CrossRef]
- Liu, D.H.; Chen, X.H.; Peng, D. Some cosine similarity measures and distance measures between q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 2019, 34, 1572–1587. [Google Scholar] [CrossRef]
- Luqman, A.; Akram, M.; Al-Kenani, A.N. Q-Rung orthopair fuzzy hypergraphs with applications. Mathematics 2019, 7, 260. [Google Scholar] [CrossRef]
- Xu, Y.; Shang, X.P.; Wang, J.; Wu, W.; Huang, H.Q. Some q-Rung Dual Hesitant Fuzzy Heronian Mean Operators with Their Application to Multiple Attribute Group Decision-Making. Symmetry 2018, 10, 472. [Google Scholar] [CrossRef]
- Ju, Y.B.; Luo, C.; Ma, J.; Wang, A.H. A novel multiple-attribute group decision-making method based on q-rung orthopair fuzzy generalized power weighted aggregation operators. Int. J. Intell. Syst. 2019, 34, 2077–2103. [Google Scholar] [CrossRef]
- Wang, H.H.; Ju, Y.B.; Liu, P.D. Multi-attribute group decision-making methods based on q-rung orthopair fuzzy linguistic sets. Int. J. Intell. Syst. 2019, 34, 1129–1157. [Google Scholar] [CrossRef]
- Wang, J.; Gao, H.; Wei, G.W.; Wei, Y. Methods for Multiple-Attribute Group Decision Making with q-Rung Interval-Valued Orthopair Fuzzy Information and Their Applications to the Selection of Green Suppliers. Symmetry 2019, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wei, G.W.; Wei, C.; Wei, Y. Dual Hesitant q-Rung Orthopair Fuzzy Muirhead Mean Operators in Multiple Attribute Decision Making. IEEE Access. 2019, 7, 67139–67166. [Google Scholar] [CrossRef]
- Chen, K.; Luo, Y.D. Generalized orthopair linguistic Muirhead mean operators and their application in multi-criteria decision making. J. Intell. Fuzzy Syst. 2019, 37, 797–809. [Google Scholar] [CrossRef]
- Wang, J.; Wei, G.; Lu, J.; Alsaadi, F.E.; Hayat, T.; Wei, C.; Zhang, Y. Some q-rung orthopair fuzzy Hamy mean operators in multiple attribute decision-making and their application to enterprise resource planning systems selection. Int. J. Intell. Syst. 2019, 34, 2429–2458. [Google Scholar] [CrossRef]
- Gao, H.X.; Ju, Y.B.; Zhang, W.K.; Ju, D.W. Multi-Attribute Decision-Making Method Based on Interval-Valued q-Rung Orthopair Fuzzy Archimedean Muirhead Mean Operators. IEEE Access. 2019, 7, 74300–74315. [Google Scholar] [CrossRef]
- Liu, P.D.; Liu, J.L. Some q-Rung Orthopai Fuzzy Bonferroni Mean Operators and Their Application to Multi-Attribute Group Decision Making. Int. J. Intell. Syst. 2018, 33, 315–347. [Google Scholar] [CrossRef]
- Liu, Z.M.; Wang, S.; Liu, P.D. Multiple attribute group decision making based on q-rung orthopair fuzzy Heronian mean operators. Int. J. Intell. Syst. 2018, 33, 2341–2363. [Google Scholar] [CrossRef]
- Liu, P.D.; Wang, P. Multiple-Attribute Decision-Making Based on Archimedean Bonferroni Operators of q-Rung Orthopair Fuzzy Numbers. IEEE Trans. Fuzzy Syst. 2019, 27, 834–848. [Google Scholar] [CrossRef]
- Yang, W.; Pang, Y.F. New q-rung orthopair fuzzy partitioned Bonferroni mean operators and their application in multiple attribute decision making. Int. J. Intell. Syst. 2019, 34, 439–476. [Google Scholar] [CrossRef]
- Xing, Y.P.; Zhang, R.T.; Zhu, X.M.; Bai, K.Y. Q-Rung orthopair fuzzy uncertain linguistic choquet integral operators and their application to multi-attribute decision making. J. Intell. Fuzzy Syst. 2019, 37, 1123–1139. [Google Scholar] [CrossRef]
- Zhang, C.; Liao, H.C.; Luo, L. Additive consistency-based priority-generating method of q-rung orthopair fuzzy preference relation. Int. J. Intell. Syst. 2019, 34, 2151–2176. [Google Scholar] [CrossRef]
- Peng, X.D.; Krishankumar, R.; Ravichandran, K.S. Generalized orthopair fuzzy weighted distance-based approximation (WDBA) algorithm in emergency decision-making. Int. J. Intell. Syst. 2019, 34, 2364–2402. [Google Scholar] [CrossRef]
- Liu, D.H.; Peng, D.; Liu, Z.M. The distance measures between q-rung orthopair hesitant fuzzy sets and their application in multiple criteria decision making. Int. J. Intell. Syst. 2019, 34, 2104–2121. [Google Scholar] [CrossRef]
- Hussain, A.; Ali, M.I.; Mahmood, T. Covering based q-rung orthopair fuzzy rough set model hybrid with TOPSIS for multi-attribute decision making. J. Intell. Fuzzy Syst. 2019, 37, 981–993. [Google Scholar] [CrossRef]
- Yang, M.S.; Ko, C.H. On a class of fuzzy c-numbers clustering procedures for fuzzy data. Fuzzy Sets Syst. 1996, 84, 49–60. [Google Scholar] [CrossRef]
- Li, D.Y.; Liu, C.Y. Study on the universality of the normal cloud model. Eng. Sci. 2004, 6, 28–34. [Google Scholar]
- Wang, J.Q.; Li, K.J.; Zhang, H.Y.; Chen, X.H. A score function based on relative entropy and its application in intuitionistic normal fuzzy multiple criteria decision making. J. Intell. Fuzzy Syst. 2013, 25, 567–576. [Google Scholar]
- Liu, P.D.; Teng, F. Multiple Criteria Decision Making Method based on Normal Interval-Valued Intuitionistic Fuzzy Generalized Aggregation Operator. Complexity 2016, 21, 277–290. [Google Scholar] [CrossRef]
- Wang, J.Q.; Zhou, P.; Li, K.J.; Zhang, H.Y.; Chen, X.H. Multi-criteria decision-making method based on normal intuitionistic fuzzy-induced generalized aggregation operator. Top 2014, 22, 1103–1122. [Google Scholar] [CrossRef]
- Liu, Z.M.; Liu, P.D. Normal intuitionistic fuzzy Bonferroni mean operators and their applications to multiple attribute group decision making. J. Intell. Fuzzy Syst. 2015, 29, 2205–2216. [Google Scholar] [CrossRef]
- Yang, Z.L.; Li, J.Q.; Huang, L.C.; Shi, Y.Y. Developing dynamic intuitionistic normal fuzzy aggregation operators for multi-attribute decision-making with time sequence preference. Expert Syst. Appl. 2017, 82, 344–356. [Google Scholar] [CrossRef]
- Li, J.Q.; Chen, W.; Yang, Z.L.; Li, C.Y.; Sellers, J.S. Dynamic interval-valued intuitionistic normal fuzzy aggregation operators and their applications to multi-attribute decision-making. J. Intell. Fuzzy Syst. 2018, 35, 3937–3954. [Google Scholar] [CrossRef]
- Liu, P.D. Multiple Attribute Decision-Making Methods Based on Normal Intuitionistic Fuzzy Interaction Aggregation Operators. Symmetry 2017, 9, 261. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.F.; Zhang, Z.M.; Kong, H. Some Normal Intuitionistic Fuzzy Heronian Mean Operators Using Hamacher Operation and Their Application. Symmetry 2018, 10, 199. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.N.; Li, C.L. Regression prediction for fuzzy time series. Appl. Math. A. J. Chin. Uni. 2001, 16, 451–461. [Google Scholar]
- Liu, P.D.; Wang, P. Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. Int. J. Intell. Syst. 2018, 33, 259–280. [Google Scholar] [CrossRef]
- Xu, Z. Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 2007, 15, 1179–1187. [Google Scholar]
- Xu, Z. Dependent uncertain ordered weighted aggregation operators. Inform. Fusion 2008, 9, 310–316. [Google Scholar] [CrossRef]
<(8, 0.7), (0.6, 0.7)> | <(4, 0.5), (0.2, 0.4)> | <(8, 0.5), (0.1, 0.7)> | <(4, 0.3), (0.6, 0.2)> | |
<(6, 0.4), (0.7, 0.9)> | <(5, 0.6), (0.4, 0.3)> | <(4, 0.4), (0.7, 0.2)> | <(8, 0.5), (0.6, 0.4)> | |
<(9, 0.8), (0.5, 0.4)> | <(7, 0.8), (0.7, 0.2)> | <(4, 0.3), (0.8, 0.8)> | <(6, 0.6), (0.3, 0.5)> | |
<(7, 0.6), (0.7, 0.8)> | <(8, 0.7), (0.8, 0.6)> | <(5, 0.4), (0.6, 0.9)> | <(6, 0.4), (0.7, 0.3)> | |
<(5, 0.3), (0.8, 0.4)> | <(7, 0.5), (0.5, 0.5)> | <(5, 0.3), (0.6, 0.6)> | <(8, 0.6), (0.8, 0.7)> |
<(0.889,0.077), (0.6,0.7)> | <(0.5,0.078), (0.2,0.4)> | <(1,063),(0.1, 0.7)> | <(0.5,0.038),(0.6, 0.2)> | |
<(0.667,0.033), (0.7,0.9)> | <(0.625,0.09),(0.4,0.3)> | <(0.5,0.08), (0.7, 0.2)> | <(1, 0.052),(0.6,0.4)> | |
<(1,0.089),(0.5,0.4)> | <(0.875,0.114),(0.7,0.2> | <(0.5,0.045),(0.8, 0.8)> | <(0.75,0.1),(0.3, 0.5)> | |
<(0.778,0.064), (0.7,0.8)> | <(1,0.077),(0.8,0.6)> | <(0.625,0.064),(0.6,0.9)> | <(0.75,0.044), (0.7, 0.3)> | |
<(0.556,0.023), (0.8,0.4)> | <(0.875,0.045),(0.5,0.5> | <(0.625,0.036),(0.6,0.6)> | <(1,0.075),(0.8, 0.7)> |
Aggregation Operator | The Score Value of Alternative | Alternative Ranking | ||||
---|---|---|---|---|---|---|
q-RONFWA | 0.042 | 0.132 | 0.13 | 0.131 | 0.186 | |
q-RONFWG | −0.112 | −0.09 | −0.045 | −0.058 | 0.094 | |
q-RONFOWA | 0.0141 | 0.1291 | 0.1605 | 0.1381 | 0.151 | |
q-RONFOWG | −0.127 | −0.052 | −0.046 | −0.06 | 0.0662 | |
Gq-RONFWA | 0.0702 | 0.1557 | 0.1805 | 0.1568 | 0.2134 | |
Gq-RONFWG | −0.144 | −0.171 | −0.104 | −0.107 | 0.0646 | |
Gq-RONFOWA | 0.047 | 0.151 | 0.2066 | 0.1669 | 0.1766 | |
Gq-RONFOWG | −1.58 | −1.443 | −1.094 | −1.109 | 0.4111 | |
q-RONFHA | 0.106 | 0.218 | 0.259 | 0.291 | 0.359 | |
q-RONFHG | −0.1483 | −0.1483 | −0.1172 | −0.164 | −0.0012 | |
Gq-RONFHA | 0.163 | 0.266 | 0.3224 | 0.3223 | 0.42 | |
Gq-RONFHG | −1.182 | −2.413 | −1.665 | −2.073 | −0.263 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Li, X.; Cao, Z.; Li, J. Q-rung Orthopair Normal Fuzzy Aggregation Operators and Their Application in Multi-Attribute Decision-Making. Mathematics 2019, 7, 1142. https://doi.org/10.3390/math7121142
Yang Z, Li X, Cao Z, Li J. Q-rung Orthopair Normal Fuzzy Aggregation Operators and Their Application in Multi-Attribute Decision-Making. Mathematics. 2019; 7(12):1142. https://doi.org/10.3390/math7121142
Chicago/Turabian StyleYang, Zaoli, Xin Li, Zehong Cao, and Jinqiu Li. 2019. "Q-rung Orthopair Normal Fuzzy Aggregation Operators and Their Application in Multi-Attribute Decision-Making" Mathematics 7, no. 12: 1142. https://doi.org/10.3390/math7121142
APA StyleYang, Z., Li, X., Cao, Z., & Li, J. (2019). Q-rung Orthopair Normal Fuzzy Aggregation Operators and Their Application in Multi-Attribute Decision-Making. Mathematics, 7(12), 1142. https://doi.org/10.3390/math7121142