Tseng Type Methods for Inclusion and Fixed Point Problems with Applications
Abstract
:1. Introduction
2. Mathematical Preliminaries
- (i)
- firmly nonexpansive if for each ,
- (ii)
- β-cocoercive (or β-inverse strongly monotone) if there is satisfying, for each ,
- (iii)
- L-Lipschitz continuous if there is satisfying, for each ,
- (iv)
- nonexpansive if S is L-Lipschitz continuous when ,
- (v)
- L-contraction if S is L-Lipschitz continuous when .
- (i)
- monotone if for all ,
- (ii)
- maximal monotone if there is no proper monotone extension of .
3. Convergence Analysis
- Condition 1.
- is nonempty.
- Condition 2.
- A is L-Lipschitz continuous and monotone, and B is maximal monotone.
- Condition 3.
- S is nonexpansive, and let be -Lipschitz continuous, where .
- Condition 4.
- Let and be sequences in such that and , and there exist positive real numbers a and b with for each .
Algorithm 1 An iterative algorithm for solving inclusion and fixed point problems |
Initialization: Let and . Assume . |
Iterative Steps: Obtain the iteration as follows:
|
4. Applications and Its Numerical Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Censor, Y.; Bortfeld, T.; Martin, B.; Trofimov, A. A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 2006, 51, 2353–2365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Censor, Y.; Elfving, T. A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 1994, 8, 221–239. [Google Scholar] [CrossRef]
- Cholamjiak, P.; Shehu, Y. Inertial forward–backward splitting method in Banach spaces with application to compressed sensing. Appl. Math. 2019, 64, 409–435. [Google Scholar] [CrossRef]
- Combettes, P.L.; Wajs, V.R. Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 2005, 4, 1168–1200. [Google Scholar] [CrossRef] [Green Version]
- Duchi, J.; Shalev-Shwartz, S.; Singer, Y.; Chandra, T. Efficient projections onto the l1-ball for learning in high dimensions. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–8 July 2008. [Google Scholar]
- Gibali, A.; Thong, D.V. Tseng type methods for solving inclusion problems and its applications. Calcolo 2018, 55, 49. [Google Scholar] [CrossRef]
- Kitkuan, D.; Kumam, P.; Martínez-Moreno, J.; Sitthithakerngkiet, K. Inertial viscosity forward–backward splitting algorithm for monotone inclusions and its application to image restoration problems. Int. J. Comput. Math. 2019, 1–19. [Google Scholar] [CrossRef]
- Suparatulatorn, R.; Khemphet, A.; Charoensawan, P.; Suantai, S.; Phudolsitthiphat, N. Generalized self-adaptive algorithm for solving split common fixed point problem and its application to image restoration problem. Int. J. Comput. Math. 2019, 1–15. [Google Scholar] [CrossRef]
- Suparatulatorn, R.; Charoensawan, P.; Poochinapan, K. Inertial self-adaptive algorithm for solving split feasible problems with applications to image restoration. Math. Methods Appl. Sci. 2019, 42, 7268–7284. [Google Scholar] [CrossRef]
- Attouch, H.; Peypouquet, J.; Redont, P. Backward-forward algorithms for structured monotone inclusions in Hilbert spaces. J. Math. Anal. Appl. 2018, 457, 1095–1117. [Google Scholar] [CrossRef]
- Dong, Y.D.; Fischer, A. A family of operator splitting methods revisited. Nonlinear Anal. 2010, 72, 4307–4315. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Dong, Y.D. New properties of forward–backward splitting and a practical proximal-descent algorithm. Appl. Math. Comput. 2014, 237, 60–68. [Google Scholar] [CrossRef]
- Rockafellar, R.T. Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 1976, 14, 877–898. [Google Scholar] [CrossRef] [Green Version]
- Lions, P.L.; Mercier, B. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 1979, 16, 964–979. [Google Scholar] [CrossRef]
- Passty, G.B. Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 1979, 72, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.G.; Rockafellar, R.T. Convergence rates in forward–backward splitting. SIAM J. Optim. 1997, 7, 421–444. [Google Scholar] [CrossRef] [Green Version]
- Tseng, P. A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 2000, 38, 431–446. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, N. Hybrid algorithm for common solution of monotone inclusion problem and fixed point problem and application to variational inequalities. SpringerPlus 2016, 5, 803. [Google Scholar] [CrossRef] [Green Version]
- Thong, D.V.; Vinh, N.T. Inertial methods for fixed point problems and zero point problems of the sum of two monotone mappings. Optimization 2019, 68, 1037–1072. [Google Scholar] [CrossRef]
- Cholamjiak, P.; Kesornprom, S.; Pholasa, N. Weak and strong convergence theorems for the inclusion problem and the fixed-point problem of nonexpansive mappings. Mathematics 2019, 7, 167. [Google Scholar] [CrossRef] [Green Version]
- Brézis, H.; Chapitre, I.I. Operateurs maximaux monotones. North-Holland Math. Stud. 1973, 5, 19–51. [Google Scholar]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Xu, H.K. Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 2002, 66, 240–256. [Google Scholar] [CrossRef]
- Maingé, P.E. Strong convergence of projected subgradient methods for nonsmooth and non- strictly convex minimization. Set-Valued Anal. 2008, 16, 899–912. [Google Scholar] [CrossRef]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Moudafi, A. Viscosity approximating methods for fixed point problems. J. Math. Anal. Appl. 2000, 241, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; CMS Books in Mathematics; Springer: New York, NY, USA, 2011. [Google Scholar]
- Iiduka, H.; Takahashi, W. Strong convergence theorems for nonexpansive nonself-mappings and inverse-strongly-monotone mappings. J. Convex Anal. 2004, 11, 69–79. [Google Scholar]
Algorithm 3.1 [6] | New Algorithm | |||||
---|---|---|---|---|---|---|
Elapsed Time (s) | No. of Iter. | Elapsed Time (s) | No. of Iter. | Elapsed Time (s) | No. of Iter. | |
7.0002 | 18 | 2.4982 | 5 | 3.4568 | 7 | |
3.1846 | 7 | 2.1644 | 4 | 3.3865 | 6 | |
71.3141 | 36 | 202.3074 | 8 | 22.7358 | 9 | |
51.2146 | 31 | 110.1887 | 8 | 10.7544 | 8 | |
8.8008 | 20 | 5.3593 | 9 | 2.0276 | 4 |
m Nonzero Elements | Algorithm 3.1 [6] | New Algorithm | ||
---|---|---|---|---|
Elapsed Time (s) | No. of Iter. | Elapsed Time (s) | No. of Iter. | |
0.3263 | 1703 | 0.1293 | 688 | |
0.4655 | 3331 | 0.1985 | 1285 | |
0.5966 | 4607 | 0.2990 | 1777 | |
0.6644 | 4778 | 0.3321 | 1808 | |
0.7323 | 5644 | 0.4051 | 2144 |
m Nonzero Elements | Algorithm 3.1 [6] | New Algorithm | ||
---|---|---|---|---|
Elapsed Time (s) | No. of Iter. | Elapsed Time (s) | No. of Iter. | |
0.3848 | 2059 | 0.1292 | 811 | |
0.5229 | 3598 | 0.2583 | 1417 | |
0.5954 | 4098 | 0.2927 | 1562 | |
0.9350 | 5537 | 0.4221 | 2218 | |
1.1025 | 7350 | 0.5007 | 2865 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suparatulatorn, R.; Khemphet, A. Tseng Type Methods for Inclusion and Fixed Point Problems with Applications. Mathematics 2019, 7, 1175. https://doi.org/10.3390/math7121175
Suparatulatorn R, Khemphet A. Tseng Type Methods for Inclusion and Fixed Point Problems with Applications. Mathematics. 2019; 7(12):1175. https://doi.org/10.3390/math7121175
Chicago/Turabian StyleSuparatulatorn, Raweerote, and Anchalee Khemphet. 2019. "Tseng Type Methods for Inclusion and Fixed Point Problems with Applications" Mathematics 7, no. 12: 1175. https://doi.org/10.3390/math7121175
APA StyleSuparatulatorn, R., & Khemphet, A. (2019). Tseng Type Methods for Inclusion and Fixed Point Problems with Applications. Mathematics, 7(12), 1175. https://doi.org/10.3390/math7121175