Iterative Methods for Computing the Resolvent of Composed Operators in Hilbert Spaces
Abstract
:1. Introduction
2. Preliminaries
- (i) and are firmly non-expansive and maximally monotone;
- (ii) the Yoshida approximation is λ-cocoercive and maximally monotone.
- (i) T is non-expansive if and only if is ;
- (ii) T is firmly non-expansive if and only if is firmly non-expansive;
- (iii) T is if and only if is , where .
- (i) is maximally monotone;
- (ii) is firmly non-expansive;
- (iii) .
- (i) is Fejer monotone with respect to , i.e., , for any ;
- (ii) converges strongly to 0;
- (iii) converges weakly to a fixed point in .
3. Computing Method for the Resolvent of Composed Operators
3.1. Analytic Approach Method of Resolvent Operator
- (i) We have
- (ii) Suppose that , for some . Then,
3.2. Fixed-Point Approach Method of Resolvent Operator
- (i) The operator is -cocoercive;
- (ii) For any , is -averaged; furthermore, the operator is -averaged.
- (i) converges weakly to a fixed-point of ;
- (ii) Furthermore, if , then converges strongly to the resolvent .
3.3. Resolvent of a Sum of m Maximally Monotone Operators with U
- (a);
- (b).
4. Applications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rockafellar, R.T. Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 1976, 14, 877–898. [Google Scholar] [CrossRef]
- Rockafellar, R.T. Augmented lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1976, 1, 97–116. [Google Scholar] [CrossRef]
- Tossings, P. The perturbed proximal point algorithm and some of its applications. Appl. Math. Optim. 1994, 29, 125–159. [Google Scholar] [CrossRef]
- Spingarn, J.E. Applications of the method of partial inverses to convex programming: Decomposition. Math. Program. 1985, 32, 199–223. [Google Scholar] [CrossRef]
- Moreau, J.J. Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad. Sci. Paris Ser. A Math. 1962, 255, 2897–2899. [Google Scholar]
- Combettes, P.L.; Wajs, V.R. Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 2005, 4, 1168–1200. [Google Scholar] [CrossRef]
- Combettes, P.L.; Pesquet, J.-C. A Douglas–Rachford splitting approach to nonsmooth conve variational signal recovery. IEEE J. Sel. Top. Signal Process. 2007, 1, 564–574. [Google Scholar] [CrossRef]
- Parikh, N.; Boyd, S. Proximal algorithms. Found. Trends Optim. 2014, 1, 123–231. [Google Scholar] [CrossRef]
- Combettes, P.L.; Dũng, D.; Vũ, B.C. Proximity for sums of composite functions. J. Math. Anal. Appl. 2011, 380, 680–688. [Google Scholar] [CrossRef] [Green Version]
- Adly, S.; Bourdin, L.; Caubet, F. On a decomposition formula for the proximal operator of the sum of two convex functions. arXiv, 2018; arXiv:1707.08509v2. [Google Scholar]
- Bauschke, H.H.; Combettes, P.L. A Dykstra-like algorithm for two montone operators. Pac. J. Optim. 2008, 4, 383–391. [Google Scholar]
- Dykstra, R.L. An algorithm for restricted least squares regression. J. Am. Stat. Assoc. 1983, 78, 837–842. [Google Scholar] [CrossRef]
- Combettes, P.L. Iterative construction of the resolvent of a sum of maximal monotone operators. J. Convex Anal. 2009, 16, 727–748. [Google Scholar]
- Aragón Artacho, F.J.; Campoy, R. Computing the resolvent of the sum of maximally monotone operators with the averaged alternating modified reflections algorithm. arxiv, 2018; arXiv:1805.09720. [Google Scholar]
- Aragón Artacho, F.J.; Campoy, R. A new projection method for finding the closest point in the intersection of convex sets. Comput. Optim. Appl. 2018, 69, 99–132. [Google Scholar] [CrossRef]
- Fukushima, M. The primal Douglas–Rachford splitting algorithm for a class of monotone mappings with application to the traffic equilibrium problem. Math. Program. 1996, 72, 1–15. [Google Scholar] [CrossRef]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Motonone Operator Theory in Hilbert Spaces, 2nd ed.; Springer: London, UK, 2017. [Google Scholar]
- Moudafi, A. Computing the resolvent of composite operators. Cubo 2014, 16, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Robinson, S.M. Composition duality and maximal monotonicity. Math. Program. 1999, 85, 1–13. [Google Scholar] [CrossRef]
- Pennanen, T. Dualization of generalized equations of maximal monotone type. SIAM J. Optim. 2000, 10, 809–835. [Google Scholar] [CrossRef]
- Bot, R.I.; Grad, M.S.; Wanka, G. Maximal monotonicity for the precomposition with a linear operator. SIAM J. Optim. 2007, 17, 1239–1252. [Google Scholar]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Physica D 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Micchelli, C.A.; Shen, L.; Xu, Y. Proximity algorithms for image models: Denoising. Inverse Probl. 2011, 27, 045009. [Google Scholar] [CrossRef]
- Lee, J.D.; Sun, Y.; Saunders, M.A. Proximal Newton-type methods for minimizing composite functions. SIAM J. Optim. 2014, 24, 1420–1443. [Google Scholar] [CrossRef]
- Hager, W.; Ngo, C.; Yashtini, M.; Zhao, H.C. An alternating direction approximate newton algorithm for ill-conditioned inverse problems with application to parallel MRI. J. Oper. Res. Soc. China 2015, 3, 139–162. [Google Scholar] [CrossRef]
- Li, X.D.; Sun, D.F.; Toh, K.C. A highly efficient semismooth newton augmented lagrangian method for solving Lasso problems. SIAM J. Optim. 2018, 28, 433–458. [Google Scholar] [CrossRef]
- Argyriou, A.; Micchelli, C.A.; Pontil, M.; Shen, L.X.; Xu, Y.S. Efficient first order methods for linear composite regularizers. arXiv, 2011; arXiv:1104.1436. [Google Scholar]
- Chen, D.Q.; Zhou, Y.; Song, L.J. Fixed point algorithm based on adapted metric method for convex minimization problem with application to image deblurring. Adv. Comput. Math. 2016, 42, 1287–1310. [Google Scholar] [CrossRef]
- Chen, P.J.; Huang, J.G.; Zhang, X.Q. A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration. Inverse Probl. 2013, 29, 025011. [Google Scholar] [CrossRef]
- Hiriart-Urruty, J.-B.; Lemaréchal, C. Conve Analysis and Minimization Algorithms; Spinger: New York, NY, USA, 1993. [Google Scholar]
- Combettes, P.L.; Vũ, B.C. Variable metric forward-backward splitting with applications to monotone inclusions in duality. Optimization 2014, 63, 1289–1318. [Google Scholar] [CrossRef]
- Zhang, X.; Burger, M.; Osher, S. A unified primal-dual framework based on Bregman iteration. J. Sci. Comput. 2011, 46, 20–46. [Google Scholar] [CrossRef]
- Bitterlich, S.; Bot, R.I.; Csetnek, E.R.; Wanka, G. The proximal alternating minimization algorithm for two-block separable convex optimization problems with linear constraints. J. Optim. Theory Appl. 2018. [Google Scholar] [CrossRef]
- Ogura, N.; Yamada, I. Non-strictly convex minimization over the fixed point set of the asymptotically shrinking non-expansive mapping. Numer. Funct. Anal. Optim. 2002, 23, 113–137. [Google Scholar] [CrossRef]
- Combettes, P.L.; Yamada, I. Compositions and convex combinations of averaged non-expansive operators. J. Math. Anal. Appl. 2015, 425, 55–70. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Tang, Y.; Zhu, C. Iterative Methods for Computing the Resolvent of Composed Operators in Hilbert Spaces. Mathematics 2019, 7, 131. https://doi.org/10.3390/math7020131
Yang Y, Tang Y, Zhu C. Iterative Methods for Computing the Resolvent of Composed Operators in Hilbert Spaces. Mathematics. 2019; 7(2):131. https://doi.org/10.3390/math7020131
Chicago/Turabian StyleYang, Yixuan, Yuchao Tang, and Chuanxi Zhu. 2019. "Iterative Methods for Computing the Resolvent of Composed Operators in Hilbert Spaces" Mathematics 7, no. 2: 131. https://doi.org/10.3390/math7020131
APA StyleYang, Y., Tang, Y., & Zhu, C. (2019). Iterative Methods for Computing the Resolvent of Composed Operators in Hilbert Spaces. Mathematics, 7(2), 131. https://doi.org/10.3390/math7020131