A New Representation of the k-Gamma Functions
Abstract
:1. Introduction
2. Materials and Methods
2.1. k-Gamma Functions
2.2. Distributions and Test Functions
3. Results
3.1. New Series Representation of the k-Gamma Functions
3.2. Convergence and Applications of New Representation
3.3. Verification of the Results Obtained by New Representation
3.4. Further Distributional Properties of k-Gamma Function
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- For a regular distrbution,is a continuous linear functional over
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- where
- 13.
- 14.
- 15.
- 16.
4. Discussion and Future Directions
Acknowledgments
Conflicts of Interest
References
- Dıaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Math. 2007, 15, 179–192. [Google Scholar]
- Dıaz, R.; Pariguan, E. Feynman-Jackson integrals. J. Nonlinear Math. Phys. 2006, 13, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Karwowski, J.; Witek, A.H. Biconfluent Heun equation in quantum chemistry: Harmonium and related systems. Theor. Chem. Acc. 2014, 133, 1494. [Google Scholar] [CrossRef]
- Lackner, M.; Lackner, M. On the likelihood of single-peaked preferences. Soc. Choice Welf. 2017, 48, 717–745. [Google Scholar] [CrossRef] [PubMed]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Agarwal, P.; Chand, M.; Baleanu, D.; O’Regan, D.; Shilpi, J. On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function. Adv. Differ. Equ. 2018, 1, 249. [Google Scholar] [CrossRef]
- Set, E.; Tomar, M.; Sarikaya, M.Z. On generalized Grüss type inequalities for k-fractional integrals. Appl. Math. Comput. 2015, 269, 29–34. [Google Scholar] [CrossRef]
- Dıaz, R.; Teruel, C. q, k-generalized gamma and beta functions. J. Nonlinear Math. Phys. 2005, 12, 118–134. [Google Scholar] [CrossRef]
- Dıaz, R.; Pariguan, E. On the Gaussian q-distribution. J. Math. Anal. Appl. 2015, 358, 1–9. [Google Scholar] [CrossRef]
- Fernández-Navarro, F.; Hervás-Martínez, C.; Gutiérrez, P.A.; Peña-Barragán, J.M.; López-Granados, F. Parameter estimation of q-gaussian radial basis functions neural networks with a hybrid algorithm for binary classification. Neurocomputing 2012, 75, 123–134. [Google Scholar]
- Rehman, A.; Mubeen, S. Some inequalities involving k-gamma and k-beta functions with applications—II. J. Inequal. Appl. 2014, 2014, 445. [Google Scholar] [CrossRef]
- Díaz, R.; Ortiz, C.; Pariguan, E. On the k-gamma q-distribution. Open Math. 2010, 8, 448–458. [Google Scholar]
- Agarwal, P.; Chand, M.; Choi, J.; Singh, G. Certain fractional integrals and image formulas of generalized k-bessel function. Commun. Korean Math. Soc. 2018, 33, 423–436. [Google Scholar]
- Nisar, K.S.; Mondal, S.R.; Choi, J. Certain inequalities involving the k-Struve function. J. Inequal. Appl. 2017, 1, 71. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, M.A.; Qadir, A. Fourier transform and distributional representation of Gamma function leading to some new identities. Int. J. Math. Math. Sci. 2004, 37, 2091–2096. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Qadir, A. Fourier transform and distributional representation of the generalized gamma function with some applications. Appl. Math. Comput. 2011, 218, 1084–1088. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Qadir, A. Fourier transform representation of the extended Fermi-Dirac and Bose-Einstein functions with applications to the family of the zeta and related functions. Integral Transforms Spec. Funct. 2018, 22, 453–466. [Google Scholar] [CrossRef]
- Tassaddiq, A. Some Representations of the Extended Fermi-Dirac and BoseEinstein Functions with Applications. Ph.D. Dissertation, National University of Sciences and Technology Islamabad, Islamabad, Pakistan, 2011. [Google Scholar]
- Al-Lail, M.H.; Qadir, A. Fourier transform representation of the generalized hypergeometric functions with applications to the confluent and gauss hypergeometric functions. Appl. Math. Comput. 2015, 263, 392–397. [Google Scholar] [CrossRef]
- Tassaddiq, A. A New Representation of the Extended Fermi-Dirac and Bose-Einstein Functions. Int. J. Math. Anal. Appl. 2017, 5, 435–446. [Google Scholar]
- Tassaddiq, A.; Safdar, R.; Kanwal, T. A distributional representation of gamma function with generalized complex domain. Adv. Pure Math. 2017, 7, 441–449. [Google Scholar] [CrossRef]
- Tassaddiq, A. A new representation of the Srivastava λ-generalized Hurwitz-Lerch zeta functions. Symmetry 2018, 10, 733. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series: Elementary Functions; Gordon & Breach Science Publishers: New York, NY, USA, 1992; Volume 1-V. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; [With 1 CD-ROM (Windows, Macintosh and UNIX)]; U.S. Department of Commerce, National Institute of Standards and Technology: Washington, DC, USA, 2010.
- Chaudhry, M.A.; Zubair, S.M. On a Class of Incomplete Gamma Functions with Applications; Chapman and Hall (CRC Press Company): Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2001. [Google Scholar]
- Gel’fand, I.M.; Shilov, G.E. Generalized Functions: Properties and Operations; Academic Press: New York, NY, USA, 1969; Volume 1-V. [Google Scholar]
- Zamanian, A.H. Distribution Theory and Transform Analysis; Dover Publications: New York, NY, USA, 1987. [Google Scholar]
- Richards, I.; Youn, H. Theory of Distributions: A Non Technical Introduction; Cambridge University Press: Cambridge, MA, USA; London, UK; New York, NY, USA, 2007. [Google Scholar]
- Hoskins, R.F.; Pinto, J.S. Theories of Generalised Functions: Distributions, Ultradistributions and Other Generalised Functions, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Lebedeve, N.N. Special Functions and Their Applications; Prentice Hall: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassaddiq, A. A New Representation of the k-Gamma Functions. Mathematics 2019, 7, 133. https://doi.org/10.3390/math7020133
Tassaddiq A. A New Representation of the k-Gamma Functions. Mathematics. 2019; 7(2):133. https://doi.org/10.3390/math7020133
Chicago/Turabian StyleTassaddiq, Asifa. 2019. "A New Representation of the k-Gamma Functions" Mathematics 7, no. 2: 133. https://doi.org/10.3390/math7020133
APA StyleTassaddiq, A. (2019). A New Representation of the k-Gamma Functions. Mathematics, 7(2), 133. https://doi.org/10.3390/math7020133