On the (p, q)–Chebyshev Polynomials and Related Polynomials
Abstract
:1. Introduction
2. –Chebyshev Polynomials
3. Multilinear and Multilateral Generating Functions
4. Some Examples for Generating Functions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kim, T.; Kim, D.; Kwon, J.S.; Dolgy, D.V. Expressing sums of finite products of Chebyshev polynomials of the second kind and Fibonacci polynomials by several orthogonal polynomials. Mathematics 2018, 6, 14. [Google Scholar] [CrossRef]
- Kim, T.; Dolgy, D.V.; Kim, D.S. Representing sums of finite products of Chebyshev polynomials of the second kind and Fibonacci polynomials in terms of Chebyshev polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2018, 28, 321–335. [Google Scholar]
- Mason, J.C.; Handscomb, J.C. Chebyshev Polynomials; Chapman & Hall: Boca Raton, FL, USA, 2003. [Google Scholar]
- Carlitz, L. Fibonacci notes 4: q–Fibonacci polynomials. Fibonacci Q 1975, 13, 97–102. [Google Scholar]
- Cigler, J. A simple approach to q–Chebyshev polynomials. arXiv, 2012; arXiv:1201.4703v2. [Google Scholar]
- Cigler, J. q–Chebyshev polynomials. arXiv, 2012; arXiv:1205.5383. [Google Scholar]
- Cigler, J. q–Fibonacci polynomials. Fibonacci Q 2003, 41, 31–40. [Google Scholar]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Park, J.W. Sums of finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials. J. Inequal. Appl. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Dolgy, D.V.; Kim, D.S.; Seo, J.J. Convolved Fibonacci numbers and their applications. Ars Combin. 2017, 135, 119–131. [Google Scholar]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Ryoo, C.-S. Representing sums of finite products of Chebyshev polynomials of third and fourth kinds by Chebyshev polynomials. Symmetry 2018, 10, 10. [Google Scholar] [CrossRef]
- Kim, T.; Dolgy, D.S.; Kwon, D.V.J. Sums of finite products of Chebyshev polynomials of the third and fourth kinds. Adv. Differ. Eq. 2018, 2018, 17. [Google Scholar] [CrossRef]
- Tuglu, N.; Kocer, E.G.; Stakhov, A. Bivariate Fibonacci like p–polynomials. Appl. Math. Comput. 2011, 217, 10239–10246. [Google Scholar] [CrossRef]
- Corcino, R. On p, q-binomial coefficients. Integers 2008, 8, #A29. [Google Scholar]
- Hounkonnou, M.N.; Bukweli Kyemba, J.D. R(p, q) calculus: Differentiation and integration. SUTJ Math. 2013, 49, 145–167. [Google Scholar]
- Jagannathan, R.; Rao, K.S. Two parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. In Proceedings of the International Conference on Number Theory and Mathematical Physics, Kumbakonam, India, 20–21 December 2005. [Google Scholar]
- Sadjang, P.N. On the fundemantal theorem of (p, q)–calculus and some (p, q)–Taylor formulas. arXiv, 2013; arXiv:1309.3934v1. [Google Scholar]
- Sahai, V.; Srivastava, S. On irreducible p, q-representations of gl(2). J. Comp. Appl. Maths. 2003, 160, 271–281. [Google Scholar] [CrossRef]
- Sahai, V.; Yadav, S. Representations of two parameter quantum algebras and p, q-special functions. J. Math. Anal. Appl. 2007, 335, 268–279. [Google Scholar] [CrossRef]
- Kac, V.; Chenney, P. Quantum Calculus; Springer: New York, NY, USA, 2001. [Google Scholar]
- Masjed-Jamei, M.; Soleyman, F.; Area, I.; Nieto, J.J. On (p, q)–classical orthogonal polynomials and their characterization theorems. Adv. Differ. Eq. 2017. [Google Scholar] [CrossRef]
- Soleyman, F.; Area, I.; Masjed-Jamei, M.; Nieto, J.J. Representation of (p, q)–Bernstein polynomials in terms of (p, q)–Jacobi polynomials. J. Inequal. Appl. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Altın, A.; Aktaş, R.; Erkuş-Duman, E. On a multivariable extension for the extended Jacobi polynomials. J. Math. Anal. Appl. 2009, 353, 121–1336. [Google Scholar] [CrossRef]
- Erkuş-Duman, E.; Tuglu, N. Generating functions for the generalized bivariate Fibonacci and Lucas polynomials. J. Comput. Anal. Appl. 2015, 18, 815–821. [Google Scholar]
- Srivastava, H.M.; Özarslan, M.A.; Kaanoğlu, C. Some families of generating functions for a certain class of three-variable polynomials. Integral Transform. Spec. Funct. 2010, 21, 885–896. [Google Scholar] [CrossRef]
- Kızılateş, C.; Çekim, B. New families of generating functions for q-Fibonacci and the related polynomials. Ars. Combin. 2018, 136, 397–404. [Google Scholar]
- Ghaani Farashahi, A.; Chirikjian, G.S. Fourier-Zernike series of convolutions on disks. Mathematics 2018, 6, 290. [Google Scholar] [CrossRef]
- Hounkonnou, M.N.; Arjika, S. (p, q)–deformed Fibonacci and Lucas polynomials: characterization and Fourier integral transforms. arXiv, 2013; arXiv:1307.2623v1. [Google Scholar]
x | s | p | q | Tn | –Chebyshev Polynomials of First Kind |
---|---|---|---|---|---|
s | p | q | –Lucas Polynomials | ||
x | 1 | 1 | First kind of Chebyshev Polynomials | ||
1 | 1 | 1 | Lucas Polynomials | ||
1 | 1 | 1 | Lucas Numbers | ||
x | 1 | 1 | 1 | Pell Lucas Polynomials | |
1 | 1 | 1 | 1 | Pell Lucas Numbers | |
1 | 1 | Jacobsthal Lucas Polynomials | |||
2 | 1 | 1 | Jacobsthal Lucas Numbers |
x | s | p | q | Un | –Chebyshev Polynomials of Second Kind |
---|---|---|---|---|---|
s | p | q | –Fibonacci Polynomials | ||
x | 1 | 1 | Second kind of Chebyshev Polynomials | ||
1 | 1 | 1 | Fibonacci Polynomials | ||
1 | 1 | 1 | Fibonacci Numbers | ||
x | 1 | 1 | 1 | Pell Polynomials | |
1 | 1 | 1 | 1 | Pell Numbers | |
1 | 1 | Jacobsthal Polynomials | |||
2 | 1 | 1 | Jacobsthal Numbers |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kızılateş, C.; Tuğlu, N.; Çekim, B. On the (p, q)–Chebyshev Polynomials and Related Polynomials. Mathematics 2019, 7, 136. https://doi.org/10.3390/math7020136
Kızılateş C, Tuğlu N, Çekim B. On the (p, q)–Chebyshev Polynomials and Related Polynomials. Mathematics. 2019; 7(2):136. https://doi.org/10.3390/math7020136
Chicago/Turabian StyleKızılateş, Can, Naim Tuğlu, and Bayram Çekim. 2019. "On the (p, q)–Chebyshev Polynomials and Related Polynomials" Mathematics 7, no. 2: 136. https://doi.org/10.3390/math7020136
APA StyleKızılateş, C., Tuğlu, N., & Çekim, B. (2019). On the (p, q)–Chebyshev Polynomials and Related Polynomials. Mathematics, 7(2), 136. https://doi.org/10.3390/math7020136