ON H+Type Multivalued Contractions and Applications in Symmetric and Probabilistic Spaces
Abstract
:1. Introduction
2. Preliminaries
- (W1)
- if and only if and , for
- (W2)
- , for all
- 1.
- A topology on Y is defined by if and only if, for each , there exists such that .
- 2.
- A subset P of Y is a neighborhood of if there exists such that .
- 3.
- Such s is a semi-metric if for each and each , is a neighborhood of y in the topology .
- (a)
- is S-complete if, for every s-Cauchy sequence , there exists with .
- (b)
- is s-Cauchy complete if, for every s-Cauchy sequence , there exists with with respect to .
- (c)
- is s-continuous if, whenever , we have .
- (d)
- is -continuous if, whenever with respect to , we have with respect to .
- (W3)
- (W4)
- (CC)
- (i)
- s-closed if and only if , where and ;
- (ii)
- bounded if and only if .
- (i)
- ;
- (ii)
- ;
- (iii)
- for all .
3. Main Results
3.1. Fixed Point Theorems Using Distance Functions
- (1)
- if there exist two functions and α such that
- (2)
- for every , , , there exists such that
- (i)
- T is α-admissible;
- (ii)
- there exist in Y and in such that ;
- (iii)
- T is α--continuous.
- (i)
- T is -admissible;
- (ii)
- there exist in Y and in such that ;
- (iii)
- T is α--continuous.
- (i)
- T is α-admissible;
- (ii)
- there exist in Y and in such that ;
- (iii)
- if is a sequence in Y with and for all then .
3.2. Common Fixed Point Theorems Using Distance
- (1)
- there exist and a symmetric function such that
- (2)
- for every ,
- (a)
- , , and there exists such that
- (b)
- , , and there exists such that
- (i)
- is α-admissible;
- (ii)
- there exist in Y and such that ;
- (iii)
- if is any sequence in Y with and for all , then we have .
- Here symmetric space is α-complete with . In fact, for a given sequence , there is such that .
- The pair is α-admissible because for such that , a, b should lie in . Then , which are again subsets of . Thus, for any and , .
- There exist and such that .
- If every sequence in Y such that satisfies , then , which in turn gives . Thus, we have .
- Now for , one can easily verify that . In other cases, since , the condition (7) always holds.
- It is also easy to verify that, for all , , and , there exists such that . For every , , , there exists such that .
3.3. Fixed Point Results Without Using or Distance Functions
- (i)
- T is α-admissible;
- (ii)
- there exist in Y and such that ;
- (iii)
- for every sequence in Y such that with , there exist a sequence in such that for some .
4. An Application to Probabilistic Spaces
- (1)
- for all , , where is value of G at ;
- (2)
- if and only if , where K is the distribution function given as if and if ;
- (3)
- ;
- (4)
- If and , then .
- (P4)
- for all
- (1)
- if and only if .
- (2)
- h is a compatible symmetric for .
- (3)
- is complete if and only if is S-complete.
- (i)
- there exist and such that ;
- (ii)
- there exists such that and implies for all ;
- (iii)
- if there is a sequence such that for all and for all , then we have .
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nadler, S.B. Multi-valued contraction mappings. Pacif. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Liu, S. Fixed point theorems for multivalued contractive mappings and multivalued Caristi type mappings. J. Math. Anal. Appl. 2006, 317, 103–112. [Google Scholar] [CrossRef]
- Kaneko, H. Generalized contractive multi-valued mapping and their fixed points. Math. Japon 1988, 133, 57–64. [Google Scholar]
- Klim, D.; Wardowski, D. Fixed point theorems for set-valued contractions in complete metric spaces. J. Math. Anal. Appl. 2007, 334, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Abbas, M.; Vetro, C. Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. Topol. Appl. 2012, 159, 3234–3242. [Google Scholar] [CrossRef]
- Aydi, H.; Abbas, M.; Vetro, C. Common Fixed points for multivalued generalized contractions on partial metric spaces. RACSAM Rev. Real Acad. Cienc. Exactas Fasicas Nat. Ser. A Math. 2014, 108, 483–501. [Google Scholar] [CrossRef]
- Lim, T.C. On fixed point stability for set-valued mappings with applications to generalized differential equations and their fixed points. J. Math. Anal. Appl. 1985, 110, 136–141. [Google Scholar] [CrossRef]
- Dozo, E.L. Multivalued nonexpansive mappings and Opial’s condition. Proc. Am. Math. Soc. 1973, 38, 286–292. [Google Scholar] [CrossRef]
- Mizoguchi, N.; Takahasi, W. Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 1989, 141, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Pathak, H.K.; Shahzad, N. A generalization of Nadler’s fixed point theorem and its application to nonconvex integral inclusion. Topol. Methods Nonlinear Anal. 2013, 41, 207–227. [Google Scholar]
- Aydi, H.; Barakat, M.A.; Mitrovic, Z.D.; Cavic, V.S. A Suzuki-type multivalued contraction on weak partial metric spaces and applications. J. Inequal. Appl. 2018, 2018, 270. [Google Scholar] [CrossRef] [PubMed]
- Nashine, H.K.; Agrawal, R.P.; Kadelburg, Z. H+-multivalued contractions and their application to homotopy theory. J. Fixed Point Theory Appl. 2017, 2017. [Google Scholar] [CrossRef]
- Dehaish, B.A.; Latif, A. A fixed point theorems for generalized contrctive type multivalued maps. Fixed Point Theory Appl. 2012, 2012, 135. [Google Scholar] [CrossRef]
- Abbas, M.; Aydi, H.; Karapinar, E. Tripled fixed points of multi-valued nonlinear contraction mappings in partially ordered metric spaces. Abstr. Appl. Anal. 2011. [Google Scholar] [CrossRef]
- Afshari, H.; Aydi, H. Existence and approximative fixed points for multifunctions. Asian-Eur. J. Math. 2019, 12, 1950022. [Google Scholar] [CrossRef]
- Aydi, H.; Felhi, A.; Sahmim, S. A Suzuki fixed point theorem for generalized multivalued mappings on metric-like spaces. Glasnik Mathematicki 2017, 52, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Ameer, E.; Aydi, H.; Arshad, M.; Alsamir, H.; Noorani, M.S. Hybrid multivalued type contraction mappings in αK-complete partial b-metric spaces and applications. Symmetry 2019, 11, 86. [Google Scholar] [CrossRef]
- Aydi, H.; Felhi, A.; Karapinar, E.; Sahmim, S. A Nadler-type fixed point theorem in dislocated spaces and applications. Miscolc Math. Notes 2018, 19, 111–124. [Google Scholar] [CrossRef]
- Felhi, A.; Aydi, H. New fixed point results for multi-valued maps via manageable functions and an application on a boundary value problem. UPB Sci. Bull. Ser. A 2018, 80, 1–12. [Google Scholar]
- Tahat, N.; Aydi, H.; Karapinar, E.; Shatanawi, W. Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces. Fixed Point Theory Appl. 2012, 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.U.; Kamram, T.; Karapinar, E. An approach to existence of fixed points of generalized contractive multivalued mappings of integral type via admissible mapping. Abstr. Appl. Anal. 2014, 141489. [Google Scholar] [CrossRef]
- Ali, M.U.; Kamram, T.; Karapinar, E. A new approach to (α,ψ)-contractive nonself multivalued mappings. J. Inequal. Appl. 2014, 2014, 71. [Google Scholar] [CrossRef]
- Ali, M.U.; Kamram, T.; Karapinar, E. (α,ψ,ξ)-contractive multi-valued mappings. Fixed Point Theory Appl. 2014, 2014, 7. [Google Scholar] [CrossRef]
- Ali, M.U.; Kamran, T.; Karapinar, E. Discussion on alpha-Strictly Contractive Nonself Multivalued Maps. Vietnam J. Math. 2016, 44, 441–447. [Google Scholar] [CrossRef]
- Patle, P.R.; Rakoćevic, V.; Patel, D.K. An alternative partial metric approach for the existence of common fixed point. Commun. Optim. Theory 2018, 2018. [Google Scholar] [CrossRef]
- Radenović, S.; Kadelburg, Z. Some results on fixed points of multifunctions on abstract metric spaces. Math. Comput. Model. 2011, 53, 746–754. [Google Scholar] [CrossRef]
- Hicks, T.L. Fixed point theorems for multivalued mappings. II. Indian J. Pure Appl. Math. 1998, 29, 133–137. [Google Scholar]
- Hicks, T.L.; Rhoades, B.E. Fixed point theory in symmetric spaces with applications to probabilistic spaces. Nonlinear Anal. 1999, 36, 331–344. [Google Scholar] [CrossRef]
- El Moutawakil, D. A fixed point theorem for multivalued maps in symmetric spaces. Appl. Math. E-Notes 2004, 4, 26–32. [Google Scholar]
- Alshehri, S.; Aranđelović, I.; Shahzad, N. Symmetric spaces and fixed points of generalized contractions. Abstr. Appl. Anal. 2014, 2014, 763547. [Google Scholar] [CrossRef]
- Arandelović, I.D.; Kečkić, D.J. Symmetric spaces approach to some fixed point results. Nonlinear Anal. 2012, 75, 5157–5168. [Google Scholar] [CrossRef]
- Arandelović, I.D.; Petković, D.S. On some topological properties of semi-metric spaces related to fixed-point theory. Int. Math. Forum 2009, 4, 2159–2160. [Google Scholar]
- Cho, S.H.; Lee, G.Y.; Bae, J.S. On coincidence and fixed point theorems in symmetric spaces. Fixed Point Theory Appl. 2008, 2008, 562130. [Google Scholar] [CrossRef]
- Cicchese, M. Questioni di completezza e contrazioni in spazi metrici generalizzati, (Italian). Bollettino dell’Unione Matematica Italiana 1976, 13A, 175–179. [Google Scholar]
- Gopal, D.; Imdad, M.; Vetro, C. Common fixed point theorems for mappings satisfying common property (E.A.) in symmetric spaces. Filomat 2011, 25, 59–78. [Google Scholar] [CrossRef]
- Karapinar, E.; Patel, D.K.; Imdad, M.; Gopal, D. Some non-unique common fixed point theorems in symmetric spaces through CLR(S,T) property. Int. J. Math. Math. Sci. 2013, 2013, 753965. [Google Scholar] [CrossRef]
- Miheţ, D. A note on a paper of T. L. Hicks and B. E. Rhoades. Nonlinear Anal. 2006, 65, 1411–1413. [Google Scholar] [CrossRef]
- Radenović, S.; Kadelburg, Z. Quasi-contractions on symmetric and cone symmetric spaces. Banach J. Math. Anal. 2011, 5, 38–50. [Google Scholar] [CrossRef]
- Wilson, W.A. On semi-metric spaces. Am. J. Math. 1931, 53, 361–373. [Google Scholar] [CrossRef]
- Jachymski, J.; Matkowski, J.; Świa̧tkowski, T. Nonlinear contractions on semimetric spaces. J. Appl. Anal. 1995, 1, 125–134. [Google Scholar] [CrossRef]
- Borges, C.J.R. On continuously semimetrizable and stratifiable spaces. Proc. Am. Math. Soc. 1970, 24, 193–196. [Google Scholar] [CrossRef]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorem for α-ψ Contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
- Asl, J.H.; Rezapour, S.; Shahzad, N. On fixed points of α-ψ-contractive multifunctions. Fixed Point Theory Appl. 2012, 2012. [Google Scholar] [CrossRef]
- Mohammadi, B.; Rezapour, S.; Shahzad, N. Some results on fixed points of α-ψ-Ciric generalized multifunctions. Fixed Point Theory Appl. 2013, 2013. [Google Scholar] [CrossRef]
- Hussain, N.; Kutbi, M.A.; Salimi, P. Fixed point theory in α-complete metric spaces with applications. Abstr. Appl. Anal. 2014, 280817. [Google Scholar] [CrossRef]
- Aydi, H.; Felhi, A.; Sahmim, S. Ćirić-Berinde fixed point theorems for multi-valued mappings on α-complete metric-like spaces. Filomat 2017, 31, 3727–3740. [Google Scholar] [CrossRef]
- Kutbi, M.A.; Sintunavarat, W. On new fixed point results for (α,ψ,ζ)-contractive multi-valued mappings on α-complete metric spaces and there consequences. Fixed Point Theory Appl. 2015, 2015. [Google Scholar] [CrossRef]
- Shahzad, N.; Alghamdi, M.A.; Alshehri, S.; Aranđelović, I. Semi-metric spaces and fixed points of α-φ-contractive maps. J. Nonlinear Sci. Appl. 2016, 9, 3147–3156. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patle, P.; Patel, D.; Aydi, H.; Radenović, S. ON H+Type Multivalued Contractions and Applications in Symmetric and Probabilistic Spaces. Mathematics 2019, 7, 144. https://doi.org/10.3390/math7020144
Patle P, Patel D, Aydi H, Radenović S. ON H+Type Multivalued Contractions and Applications in Symmetric and Probabilistic Spaces. Mathematics. 2019; 7(2):144. https://doi.org/10.3390/math7020144
Chicago/Turabian StylePatle, Pradip, Deepesh Patel, Hassen Aydi, and Stojan Radenović. 2019. "ON H+Type Multivalued Contractions and Applications in Symmetric and Probabilistic Spaces" Mathematics 7, no. 2: 144. https://doi.org/10.3390/math7020144
APA StylePatle, P., Patel, D., Aydi, H., & Radenović, S. (2019). ON H+Type Multivalued Contractions and Applications in Symmetric and Probabilistic Spaces. Mathematics, 7(2), 144. https://doi.org/10.3390/math7020144