The Prolongation Structure of the Modified Nonlinear Schrödinger Equation and Its Initial-Boundary Value Problem on the Half Line via the Riemann-Hilbert Approach
Abstract
:1. Introduction
2. The Prolongation Structures of the mNLS Equation
3. Spectral Analysis
3.1. The Reconstruction of Lax Pair
3.2. The Riemann-Hilbert Problem And Some Relations
- ;
- ;
- has simple zeros , . Furthermore, lie in , lie in .
- has simple zeros , . In addition, lie in , lie in .
- and do not have any of the same zeros.
4. The Spectral Map and the Regular Riemann-Hilbert Problem
4.1. The Spectral Map
- (i)
- and are analytic for and continuous for ,
- (ii)
- ,
- (iii)
- ,
- (iv)
- ,
- (v)
- We define , as the inverse of map , with
- is a meromorphic function.
- where
- .
- has simple zeros , , such that lie in , and lie in .
- The first column of has simple poles at . Furthermore, the second column of has simple poles at . The relevant residues are given by
- (i)
- and are analytic for and continuous ,
- (ii)
- ,
- (iii)
- ,
- (iv)
- ,
- (v)
- We define , as the inverse of map , with
- is a meromorphic function.
- where
- .
- has simple zeros , , such that lie in , and lie in .
- The first column of has simple poles at . And the second column of has simple poles at . The relevant residues are given by
4.2. The Regular Riemann-Hilbert Problem
- is a sectionally meromorphic function in .
- The residue condition of satisfies Theorem 3
- satisfies the jump condition
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, X.X.; Sun, Y.P. Two symmetry constraints for a generalized Dirac integrable hierarchy. J. Math. Anal. Appl. 2018, 458, 1073–1090. [Google Scholar] [CrossRef]
- Mcanally, M.; Ma, W.X. An integrable generalization of the D-Kaup-Newell soliton hierarchy and its bi-Hamiltonian reduced hierarchy. Appl. Math. Comput. 2018, 323, 220–227. [Google Scholar] [CrossRef]
- Ma, W.X. Conservation laws by symmetries and adjoint symmetries. Discret. Contin. Dynam. Syst. Ser. S 2017, 11, 707–721. [Google Scholar] [CrossRef]
- Xu, X.X. A deformed reduced semi-discrete Kaup-Newell equation, the related integrable family and Darboux transformation. Appl. Math. Comput. 2015, 251, 275–283. [Google Scholar] [CrossRef]
- Hirota, R. A new form of Bäcklund transformations and its relation to the inverse scattering problem. Progr. Theor. Phys. 1974, 52, 1498–1512. [Google Scholar] [CrossRef]
- Xu, X.X.; Sun, Y.P. An integrable coupling hierarchy of Dirac integrable hierarchy, its Liouville integrability and Darboux transformation. J. Nonlinear Sci. Appl. 2017, 10, 3328–3343. [Google Scholar] [CrossRef]
- Zhang, L.J.; Khalique, M. Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs. Discret. Contin. Dynam. Syst. Ser. S 2017, 11, 777–790. [Google Scholar] [CrossRef]
- Lou, S.Y.; Ruan, H.Y.; Chen, D.F.; Chen, W.Z. Similarity reductions of the KP equation by a direct method. J. Phys. A Gen. Phys. 1999, 24, 1455. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Segur, H. Solitons and the Inverse Scattering Transform; Siam: Philadelphia, PA, USA, 1981. [Google Scholar]
- Gu, J.Y.; Zhang, Y.; Dong, H.H. Dynamic behaviors of interaction solutions of (3+1)-dimensional Shallow Water wave equation. Comput. Math. Appl. 2018, 76, 1408–1419. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, H.H.; Zhang, Y. Solutions of a discrete integrable hierarchy by straightening out of its continuous and discrete constrained flows. Anal. Math. Phys. 2018. [Google Scholar] [CrossRef]
- Ma, W.X.; Zhou, Y. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Eq. 2018, 264, 2633–2659. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, H.H.; Zhang, X.E.; Yang, H.W. Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation. Comput. Math. Appl. 2016, 73, 246–252. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.H.; Dong, H.H. Interaction solutions of a (2+1)-dimensional dispersive long wave system. Comput. Math. Appl. 2018, 75, 2625–2628. [Google Scholar] [CrossRef]
- Dong, H.Y.; Lu, C.N.; Yang, H.W. The finite volume WENO with Lax-Wendroff scheme for nonlinear system of Euler equations. Mathematics 2018, 6, 211. [Google Scholar] [CrossRef]
- Lu, C.N.; Gao, Q.Q.; Fu, C.; Yang, H.W. Finite element method of BBM-Burgers equation with dissipative term based on Adaptive Moving Mesh. Discret. Dynam. Nat. Soc. 2017, 2017, 3427376. [Google Scholar] [CrossRef]
- Tao, M.S.; Dong, H.H. Algebro-Geometric solutions for a discrete integrable equation. Discret. Dynam. Nat. Soc. 2017, 2017, 5258375. [Google Scholar] [CrossRef]
- Hirota, R. Exact N-soliton solutions of the wave equation of long waves in Shallow-Water and in nonlinear lattices. J. Math. Phys. 1973, 14, 180–184. [Google Scholar] [CrossRef]
- Feng, B.F.; Maruno, K.; Ohta, Y. A two-component generalization of the reduced Ostrovsky equation and its integrable semi-discrete analogue. J. Phys. A Math. Theor. 2016, 50, 055201. [Google Scholar] [CrossRef]
- Feng, B.F.; Kawahara, T. Stationary travelling-wave solutions of an unstable KdV-Burgers equation. Phys. D Nonlinear Phenom. 2000, 137, 228–236. [Google Scholar] [CrossRef]
- Tao, M.S.; Zhang, N.; Gao, D.Z.; Yang, H.W. Symmetry analysis for three-dimensional dissipation Rossby waves. Adv. Differ. Eq. 2018, 2018, 300. [Google Scholar] [CrossRef]
- Ma, W.X.; Li, J.; Khalique, C.M. A Study on Lump Solutions to a Generalized Hirota-Satsuma-Ito Equation in (2+1)-Dimensions. Complexity 2018, 2018, 9059858. [Google Scholar] [CrossRef]
- Fokas, A.S. A unified transform method for solving linear and certain nonlinear PDEs. Proc. R. Soc. Math. Phys. Eng. Sci. 1997, 453, 1411–1443. [Google Scholar] [CrossRef]
- Fokas, A.S. On a class of physically important integrable equations. Phys. D Nonlinear Phenom. 1995, 87, 145–150. [Google Scholar] [CrossRef]
- Fokas, A.S. A Unified Approach to Boundary Value Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2008. [Google Scholar]
- Fokas, A.S. Integrable nonlinear evolution equations on the half-Line. Commun. Math. Phys. 2002, 230, 1–39. [Google Scholar] [CrossRef]
- Lenells, J. The derivative nonlinear Schrödinger equation on the half-line. Phys. D Nonlinear Phenom. 2009, 237, 3008–3019. [Google Scholar] [CrossRef]
- Lenells, J. Initial-boundary value problems for integrable evolution equations with 3 × 3 Lax pairs. Phys. D Nonlinear Phenom. 2012, 241, 857–875. [Google Scholar] [CrossRef]
- Lenells, J. The Degasperis-Procesi equation on the half-line. Nonlinear Anal. Theory Methods Appl. 2013, 76, 122–139. [Google Scholar] [CrossRef]
- Lenells, J.; Fokas, A. Boundary-value problems for the stationary axisymmetric Einstein equations: A rotating disc. Nonlinearity 2009, 24, 177–206. [Google Scholar] [CrossRef]
- Lenells, J. An integrable generalization of the sine-Gordon equation on the half-line. Ima J. Appl. Math. 2012, 76, 554–572. [Google Scholar] [CrossRef]
- Xu, J.; Fan, E.G. A Riemann-Hilbert approach to the initial-boundary problem for derivative nonlinear Schröingder equation. Acta Math. Sci. 2014, 34, 973–994. [Google Scholar] [CrossRef]
- Xu, J.; Fan, E.G. The initial-boundary value problem for the Ostrovsky-Vakhnenko equation on the half-line. Math. Phys. Anal. Geom. 2016, 19, 20. [Google Scholar] [CrossRef]
- Xu, J.; Fan, E.G. Initial-boundary value problem for integrable nonlinear evolution equation with 3 × 3 Lax pairs on the interval. Stud. Appl. Math. 2016, 136, 321–354. [Google Scholar] [CrossRef]
- Xu, J.; Fan, E.G. The three-wave equation on the half-line. Phys. Lett. A 2014, 378, 26–33. [Google Scholar] [CrossRef]
- Geng, X.G.; Liu, H.; Zhu, J.Y. Initial-boundary value problems for the coupled nonlinear Schrödinger equation on the half-Line. Stud. Appl. Math. 2015, 135, 310–346. [Google Scholar] [CrossRef]
- Tian, S.F. Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J. Differ. Eq. 2017, 262, 506–558. [Google Scholar] [CrossRef]
- Xu, J.; Fan, E.G. The unified transform method for the Sasa-Satsuma equation on the half-line. Physics 2013, 17, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Xia, T.C.; Fan, E.G. A Riemann-Hilbert approach to the Chen-Lee-Liu equation on the half line. Acta Math. Appl. Sin. Engl. Ser. 2018, 34, 493–515. [Google Scholar] [CrossRef]
- Ma, W.X. Application of the Riemann-Hilbert approach to the multicomponent AKNS integrable hierarchies. Nonlinear Anal. Real World Appl. 2019, 47, 1–17. [Google Scholar] [CrossRef]
- Hu, B.B.; Xia, T.C.; Ma, W.X. Riemann-Hilbert approach for an initial-boundary value problem of the two-component modified Korteweg-de Vries equation on the half-line. Appl. Math. Comput. 2018, 332, 148–159. [Google Scholar] [CrossRef]
- Deift, P.; Zhou, X. A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the mKdV equation. Ann. Math. 1993, 137, 295–368. [Google Scholar] [CrossRef]
- Lenells, J. The nonlinear steepest descent method: Asymptotics for initial-boundary value problems. SIAM J. Math. Anal. 2015, 48, 273–311. [Google Scholar] [CrossRef]
- Xu, J.; Fan, E.G. Long-time asymptotic for the derivative nonlinear Schrödinger equation with step-like initial value. Math. Phys. Anal. Geom. 2013, 16, 253–288. [Google Scholar] [CrossRef]
- Lenells, J. Dressing for a novel integrable generalization of the nonlinear Schrödinger equation. J. Nonlinear Sci. 2009, 20, 709–722. [Google Scholar] [CrossRef]
- Deift, P.; Zhou, X. Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space. Commun. Pure Appl. Math. 2010, 56, 1029–1077. [Google Scholar] [CrossRef]
- Wahlquist, H.D.; Estabrook, F.B. Prolongation structures of nonlinear evolution equations. J. Math. Phys. 2008, 16, 1293–1297. [Google Scholar] [CrossRef]
- Hermann, R. Pseudopotentials of Estabrook and Wahlquist, the Geometry of Solitons, and the Theory of Connections. Phys. Rev. Lett. 1976, 36, 791–795. [Google Scholar] [CrossRef]
- Deconinck, B. A Constructive Test for Integrability of Semi-Discrete Systems. Phys. Lett. A 1996, 223, 45–54. [Google Scholar] [CrossRef]
- Wang, D.S. Integrability of the coupled KdV equations derived from two-layer fluids: Prolongation structures and Miura transformations. Nonlinear Anal. 2010, 73, 270–281. [Google Scholar] [CrossRef]
- Humphreys, J.E. Introduction to Lie Algebras and Representation Theory; Springer: New York, NY, USA, 1972. [Google Scholar]
- Morris, H.C. Prolongation structures and nonlinear evolution equations in two spatial dimensions. II. A generalized nonlinear Schrödinger equation. J. Math. Phys. 1977, 18, 285–288. [Google Scholar] [CrossRef]
- Karsten, T. Hamiltonian form of the modified nonlinear Schrödinger equation for gravity waves on arbitrary depth. J. Fluid Mech. 2011, 670, 404–426. [Google Scholar]
- Wen, X.Y.; Yang, Y.Q.; Yan, Z.Y. Generalized perturbation (n,M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2015, 92, 012917. [Google Scholar] [CrossRef] [PubMed]
- Brizhik, L.; Eremko, A.; Piette, B.; Zakrzewski, W. Static solutions of a D-dimensional modified nonlinear Schrödinger equation. Nonlinearity 2003, 16, 1481–1497. [Google Scholar] [CrossRef]
- Liu, J.Q.; Wang, Z.Q. Symmetric solutions to a modified nonlinear Schrödinger equation. Nonlinearity 2007, 21, 121. [Google Scholar] [CrossRef]
- Strampp, W. Lax-pairs, spectral problems, and recursion operators. J. Math. Phys. 1984, 25, 2905–2909. [Google Scholar] [CrossRef]
- Maimistov, A.I. Evolution of solitary waves which are approximately solitons of a nonlinear Schrödinger equation. Soviet J. Exp. Theor. Phys. 1993, 77, 727–731. [Google Scholar]
- Mihalache, D.; Truta, N.; Panoiu, N.; Baboiu, D. Analytic method for solving the modified nonlinear Schrödinger equation describing soliton propagation along optical fibers. Phys. Rev. A 1993, 47, 3190–3194. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Dong, H. The Prolongation Structure of the Modified Nonlinear Schrödinger Equation and Its Initial-Boundary Value Problem on the Half Line via the Riemann-Hilbert Approach. Mathematics 2019, 7, 170. https://doi.org/10.3390/math7020170
Liu T, Dong H. The Prolongation Structure of the Modified Nonlinear Schrödinger Equation and Its Initial-Boundary Value Problem on the Half Line via the Riemann-Hilbert Approach. Mathematics. 2019; 7(2):170. https://doi.org/10.3390/math7020170
Chicago/Turabian StyleLiu, Tongshuai, and Huanhe Dong. 2019. "The Prolongation Structure of the Modified Nonlinear Schrödinger Equation and Its Initial-Boundary Value Problem on the Half Line via the Riemann-Hilbert Approach" Mathematics 7, no. 2: 170. https://doi.org/10.3390/math7020170
APA StyleLiu, T., & Dong, H. (2019). The Prolongation Structure of the Modified Nonlinear Schrödinger Equation and Its Initial-Boundary Value Problem on the Half Line via the Riemann-Hilbert Approach. Mathematics, 7(2), 170. https://doi.org/10.3390/math7020170