On the Domain of the Fibonacci Difference Matrix
Abstract
:1. Introduction
2. Results
2.1. The Domain of Fibonacci Difference Matrix F on Bounded and Convergent Series
2.2. The Duals of cs(F) and bs(F) and Matrix Transformations
3. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cooke, R.G. Infinite Matrices and Sequence Spaces; Macmillan and Co. Limited: London, UK, 1950. [Google Scholar]
- Ng, P.-N.; Lee, P.-Y. Cesaro sequence space of non-absolute type. Comment. Math. Prace Mat. 1978, 20, 429–433. [Google Scholar]
- Wang, C.S. On Nörlund Sequence Space. Tamkang J. Math. 1978, 9, 269–274. [Google Scholar]
- Malkovsky, E. Recent results in the theory of matrix transformations in sequence spaces. Mat. Vesnik 1997, 49, 187–196. [Google Scholar]
- Altay, B.; Başar, F. On some Euler sequence spaces of nonabsolute type. Ukranian Math. J. 2005, 57, 3–17. [Google Scholar] [CrossRef]
- Malkowsky, E.; Savaş, E. Matrix transformations between sequence spaces of generalized weightedmean. Appl. Math. Comput. 2004, 147, 333–345. [Google Scholar]
- Aydın, C.; Başar, F. On the new sequence spaces which include the spaces c0 and c. Hokkaido Math. J. 2004, 33, 1–16. [Google Scholar] [CrossRef]
- Kirişçi, M.; Başar, F. Some new sequence spaces derived by the domain of generalized difference matrix. Comput. Math. Appl. 2010, 60, 1299–1309. [Google Scholar] [CrossRef]
- Şengönül, M.; Başar, F. Some new Cesàro sequence spaces of non-absolute type which include thespaces c0 and c. Soochow J. Math. 2005, 31, 107–119. [Google Scholar]
- Altay, B.; Başar, F. Some paranormed Riezs sequence spaces of non-absolute type. Southeast Asian Bull. Math. 2006, 30, 591–608. [Google Scholar]
- Mursaleen, M.; Noman, A.K. On the spaces of λ-convergent and bounded sequences. Thai J. Math. 2010, 8, 311–329. [Google Scholar]
- Candan, M. Domain of the double sequential band matrix in the classical sequence spaces. J. Inequal. Appl. 2012, 2012, 281. [Google Scholar] [CrossRef]
- Candan, M.; Kayaduman, K. Almost convergent sequence space derived by generalized Fibonacci matrix and Fibonacci core. Br. J. Math. Comput. Sci. 2015, 7, 150–167. [Google Scholar] [CrossRef]
- Candan, M. Almost convergence and double sequential band matrix. Acta Math. Sci. 2014, 34, 354–366. [Google Scholar] [CrossRef]
- Candan, M. A new sequence space isomorphic to the space ℓp and compact operators. J. Math. Comput. Sci. 2014, 4, 306–334. [Google Scholar]
- Candan, M. Domain of the double sequential band matrix in the spaces of convergent and null sequences. Adv. Differ. Equ. 2014, 2014, 163. [Google Scholar] [CrossRef]
- Candan, M.; Güneş, A. Paranormed sequence space of non-absolute type founded using generalized difference matrix. Proc. Nat. Acad. Sci. India Sect. A 2015, 85, 269–276. [Google Scholar] [CrossRef]
- Candan, M. Some new sequence spaces derived from the spaces of bounded, convergent and null sequences. Int. J. Mod. Math. Sci. 2014, 12, 74–87. [Google Scholar]
- Candan, M.; Kara, E.E. A study on topological and geometrical characteristics of new Banach sequence spaces. Gulf J. Math. 2015, 3, 67–84. [Google Scholar]
- Candan, M.; Kılınç, G. A different look for paranormed Riesz sequence space derived by Fibonacci matrix. Konuralp J. Math. 2015, 3, 62–76. [Google Scholar]
- Şengönül, M.; Kayaduman, K. On the Riesz almost convergent sequence space. Abstr. Appl. Anal. 2012, 2012, 691694. [Google Scholar] [CrossRef]
- Kayaduman, K.; Şengönül, M. The spaces of Cesàro almost convergent sequences and core theorems. Acta Math. Sci. 2012, 32B, 2265–2278. [Google Scholar] [CrossRef]
- Çakan, C.; Çoşkun, H. Some new inequalities related to the invariant means and uniformly bounded function sequences. Appl. Math. Lett. 2007, 20, 605–609. [Google Scholar] [CrossRef]
- Çoşkun, H.; Çakan, C. A class of statistical and σ-conservative matrices. Czechoslovak Math. J. 2005, 55, 791–801. [Google Scholar] [CrossRef]
- Çoşkun, H.; Çakan, C.; Mursaleen. On the statistical and σ-cores. Studia Math. 2003, 154, 29–35. [Google Scholar]
- Kayaduman, K.; Furkan, H. Infinite matrices and σ(A)-core. Demonstratio Math. 2006, 39, 531–538. [Google Scholar] [CrossRef]
- Kara, E.E. Some topological and geometrical properties of new Banach sequence spaces. J. Inequal. Appl. 2013, 2013, 38. [Google Scholar] [CrossRef]
- Candan, M. A new approach on the spaces of generalized Fibonacci difference null and convergent sequences. Math. Aeterna 2015, 5, 191–210. [Google Scholar]
- Yaşar, F.; Kayaduman, K. A Different Study on the Spaces of Generalized Fibonacci Difference bs and cs Spaces Sequence. Symmetry 2018, 10, 274. [Google Scholar] [CrossRef]
- Kayaduman, K.; Yaşar, F. On Domain of Nörlund Matrix. Mathematics 2018, 6, 268. [Google Scholar] [CrossRef]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Kara, E.E.; Başarır, M.; Mursaleen, M. Compact operators on the Fibonacci difference sequence spaces ℓp(F^) and ℓ∞(F^). In Proceedings of the 1st International Eurasian Conference on Mathematical Sciences and Applications, Prishtine, Kosovo, 3–7 September 2012. [Google Scholar]
- Başarır, M.; Başar, F.; Kara, E.E. On the spaces of Fibonacci difference null convergent sequences. arXiv, 2013; arXiv:1309.0150v1. [Google Scholar]
- Demiriz, S.; Kara, E.E.; Başarır, M. On the Fibonacci almost convergent sequence spaces and Fibonacci core. Kyungpook Math. J. 2015, 55, 355–372. [Google Scholar] [CrossRef]
- Stieglitz, M.; Tietz, H. Matrix transformationen von folgenräumen eine ergebnisübersicht. Math. Z. 1997, 154, 1–16. [Google Scholar] [CrossRef]
- Wilansky, A. Summability through Functional Analysis, North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 1984; Volume 85. [Google Scholar]
- Grosse-Erdman, K.-G. Matrix transformations between the sequence space of Maddox. J. Math Anal. Appl. 1993, 180, 223–238. [Google Scholar] [CrossRef]
- Zeller, K. Allgemeine Eigenschaften von Limitierungsverfahren die auf Matrixtransformationen beruhen; Wissenschaftliche Abhandlung: Berlin, Germany, 1949. [Google Scholar]
- Hill, J.D. On the Space (γ) of Convergent Series, Tohoku Mathematical Journal, First Series, 1939. Available online: https://www.jstage.jst.go.jp/article/tmj1911/45/0/45_0_332/_article/-char/ja/ (accessed on 19 March 2010).
- Dienes, P. Taylor Series. An Introduction to the Theory of Functions of a Complex Veriable; Clarendon Press: Oxford, UK; New York, NY, USA, 1957. [Google Scholar]
- Altay, B.; Başar, F. Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space. J. Math. Anal. Appl. 2007, 336, 632–645. [Google Scholar] [CrossRef]
- Lorentz, G.G. A contribution to the theory of divergent sequences. Acta Math. 1948, 80, 167–190. [Google Scholar] [CrossRef]
- Başar, F. Strongly-conservative sequence-to-series matrix transformations. Erc. Üni. Fen Bil. Derg. 1989, 5, 888–893. [Google Scholar]
- Başar, F.; Çolak, R. Almost-conservative matrix transformations. Turkish J. Math. 1989, 13, 91–100. [Google Scholar]
- Başar, F.; Solak, İ. Almost-coercive matrix transformations. Rend. Mat. Appl. 1991, 11, 249–256. [Google Scholar]
- Jakimovski, A.; Russell, D.C. Matrix mapping between BK-spaces. Bull. Lond. Math. Soc. 1972, 4, 345–353. [Google Scholar] [CrossRef]
- Kızmaz, H. On certain sequence spaces. Can. Math. Bull. 1981, 24, 169–176. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaşar, F.; Kayaduman, K. On the Domain of the Fibonacci Difference Matrix. Mathematics 2019, 7, 204. https://doi.org/10.3390/math7020204
Yaşar F, Kayaduman K. On the Domain of the Fibonacci Difference Matrix. Mathematics. 2019; 7(2):204. https://doi.org/10.3390/math7020204
Chicago/Turabian StyleYaşar, Fevzi, and Kuddusi Kayaduman. 2019. "On the Domain of the Fibonacci Difference Matrix" Mathematics 7, no. 2: 204. https://doi.org/10.3390/math7020204
APA StyleYaşar, F., & Kayaduman, K. (2019). On the Domain of the Fibonacci Difference Matrix. Mathematics, 7(2), 204. https://doi.org/10.3390/math7020204