Generalized Fractional Integral Operators Pertaining to the Product of Srivastava’s Polynomials and Generalized Mathieu Series
Abstract
:1. Introduction and Preliminaries
2. Generalized Fractional Integration of the Mathieu Series
3. Interesting Special Cases
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tomovski, Ž; Pogány, T.K. Integral expressions for Mathieu-type power series and for the Butzer-Flocke-Hauss W-function. Fract. Calc. Appl. Anal. 2011, 14, 623–634. [Google Scholar] [CrossRef]
- Cerone, P.; Lenard, C.T. On integral forms of generalized Mathieu series. J. Inequal. Pure Appl. Math. 2003, 4, 1–11. [Google Scholar]
- Milovanović, G.V.; Pogány, T.K. New integral forms of generalized Mathieu series and related applications. Appl. Anal. Discret. Math. 2013, 7, 180–192. [Google Scholar]
- Diananda, P.H. Some inequalities related to an inequality of Mathieu. Math. Ann. 1980, 250, 95–98. [Google Scholar] [CrossRef]
- Pogány, T.K.; Srivastava, H.M.; Tomovski, Ž. Some families of Mathieu a-series and alternating Mathieu a-series. Appl. Math. Comput. 2006, 173, 69–108. [Google Scholar]
- Choi, J.; Parmar, R.K.; Pogány, T.K. Mathieu-type series built by (p, q)—Extended Gaussian hypergeometric function. Bull. Korean Math. Soc. 2017, 54, 789–797. [Google Scholar] [CrossRef]
- Choi, J.; Srivastava, H.M. Mathieu series and associated sums involving the Zeta functions. Comput. Math. Appl. 2010, 59, 861–867. [Google Scholar] [CrossRef] [Green Version]
- Elezović, N.; Srivastava, H.M.; Tomovski, Ž. Integral representations and integral transforms of some families of Mathieu type series. Integral Transform. Spec. Funct. 2008, 19, 481–495. [Google Scholar]
- Pogány, T.K.; Tomovski, Ž. Bounds improvement for alternating Mathieu type series. J. Math. Inequal. 2010, 4, 315–324. [Google Scholar]
- Saxena, R.K.; Pogány, T.K.; Saxena, R. Integral transforms of the generalized Mathieu series. J. Appl. Math. Stat. Inform. 2010, 6, 5–16. [Google Scholar]
- Srivastava, H.M.; Tomovski, Ž.; Leákovski, D. Some families of Mathieu type series and Hurwitz-Lerch zeta functions and associated probability distributions. Appl. Comput. Math. 2014, 14, 349–380. [Google Scholar]
- Tomovski, Ž. Integral representations of generalized Mathieu series via Mittag-Leffler type functions. Fract. Calc. Appl. Anal. 2007, 10, 127–138. [Google Scholar]
- Tomovski, Ž. New integral and series representations of the generalized Mathieu series. Appl. Anal. Discret. Math. 2008, 2, 205–212. [Google Scholar] [CrossRef]
- Tomovski, Ž.; Pogány, T.K. New upper bounds for Mathieu-type series. Banach J. Math. Anal. 2009, 3, 9–15. [Google Scholar] [CrossRef]
- Srivastava, H.M. A contour integral involving Fox’s H-function. Indian J. Math. 1972, 14, 1–6. [Google Scholar]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric functions. J. Lond. Math. Soc. 1935, 10, 286–293. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of integral functions defined by Taylor series. Philos. Trans. R. Soc. Lond. 1940, 238, 423–451. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric function II. Proc. Lond. Math. Soc. 1940, 46, 389–408. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press Ellis Horwood Limited: Chichester, UK, 1985. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume 1. [Google Scholar]
- Pohlen, T. The Hadamard Product and Universal Power Series. Ph.D. Thesis, Universität Trier, Trier, Germany, 2009. [Google Scholar]
- Saxena, R.K.; Parmar, R.K. Fractional integration and differentiation of the generalized Mathieu series. Axioms 2017, 6, 18. [Google Scholar] [CrossRef]
- Saigo, M. A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Coll. Gen. Ed. Kyushu Univ. 1978, 11, 135–143. [Google Scholar]
- Mathai, A.M.; Saxena, R.K. The H- Functions with Application in Statistics and Other Disciplines; Halsted Press: New York, NY, USA, 1978. [Google Scholar]
- Rainville, E.D. Special Function; Chelsea Publishing Co.: Bronx, NY, USA, 1971. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Translated from the Russian: Integrals and Derivatives of Fractional Order and Some of Their Applications (“Nauka i Tekhnika”, Minsk, 1987); Gordon and Breach Science Publishers: Reading, UK, 1993. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nisar, K.S.; Suthar, D.L.; Bohra, M.; Purohit, S.D. Generalized Fractional Integral Operators Pertaining to the Product of Srivastava’s Polynomials and Generalized Mathieu Series. Mathematics 2019, 7, 206. https://doi.org/10.3390/math7020206
Nisar KS, Suthar DL, Bohra M, Purohit SD. Generalized Fractional Integral Operators Pertaining to the Product of Srivastava’s Polynomials and Generalized Mathieu Series. Mathematics. 2019; 7(2):206. https://doi.org/10.3390/math7020206
Chicago/Turabian StyleNisar, K.S., D.L. Suthar, M. Bohra, and S.D. Purohit. 2019. "Generalized Fractional Integral Operators Pertaining to the Product of Srivastava’s Polynomials and Generalized Mathieu Series" Mathematics 7, no. 2: 206. https://doi.org/10.3390/math7020206
APA StyleNisar, K. S., Suthar, D. L., Bohra, M., & Purohit, S. D. (2019). Generalized Fractional Integral Operators Pertaining to the Product of Srivastava’s Polynomials and Generalized Mathieu Series. Mathematics, 7(2), 206. https://doi.org/10.3390/math7020206