A Coupled System of Fractional Difference Equations with Nonlocal Fractional Sum Boundary Conditions on the Discrete Half-Line
Abstract
:1. Introduction
2. Preliminaries
- There exist constants such that, for and ,
- There exist constants such that, for and ,
- There exist constants such that,
3. Main Result
- There exist positive numbers and such that, for each and ,
- There exist positive numbers and such that, for ,
- for all
- both are bounded,
- both are equicontinuous on any closed subintervals of ,
- both are equiconvergent as .
4. Example
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, G.C.; Baleanu, D. Discrete fractional logistic map and its chaos. Nonlinear Dyn. 2014, 75, 283–287. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D. Chaos synchronization of the discrete fractional logistic map. Signal Process. 2014, 102, 96–99. [Google Scholar] [CrossRef]
- Goodrich, C.S.; Peterson, A.C. Discrete Fractional Calculus; Springer: New York, NY, USA, 2015. [Google Scholar]
- Atici, F.M.; Eloe, P.W. A transform method in discrete fractional calculus. Int. J. Differ. Equ. 2007, 2, 165–176. [Google Scholar]
- Atici, F.M.; Eloe, P.W. Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 2009, 137, 981–989. [Google Scholar] [CrossRef]
- Atici, F.M.; Eloe, P.W. Two-point boundary value problems for finite fractional difference equations. J. Differ. Equ. Appl. 2011, 17, 445–456. [Google Scholar] [CrossRef]
- Abdeljawad, T. On Riemann and Caputo fractional differences. Comput. Math. Appl. 2011, 62, 1602–1611. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T. Dual identities in fractional difference calculus within Riemann. Adv. Differ. Equ. 2013, 2013, 36. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T. On delta and nabla Caputo fractional differences and dual identities. Discret. Dyn. Nat. Soc. 2013, 2013, 406910. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. Fractional differences and integration by parts. J. Comput. Anal. Appl. 2011, 13, 574–582. [Google Scholar]
- Holm, M. Sum and difference compositions in discrete fractional calculus. Cubo 2011, 13, 153–184. [Google Scholar] [CrossRef]
- Anastassiou, G. Foundations of nabla fractional calculus on time scales and inequalities. Comput. Math. Appl. 2010, 59, 3750–3762. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.; Erbe, L.; Peterson, A. Two monotonicity results for nabla and delta fractional differences. Arch. Math. 2015, 104, 589–597. [Google Scholar] [CrossRef]
- Jia, B.; Erbe, L.; Peterson, A. Convexity for nabla and delta fractional differences. J. Differ. Equ. Appl. 2015, 21, 360–373. [Google Scholar]
- Cermák, J.; Kisela, T.; Nechvátal, L. Stability and asymptotic properties of a linear fractional difference equation. Adv. Differ. Equ. 2012, 2012, 122. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Abdeljawad, T.; Baleanu, D.; Biçen, K. On the stability of some discrete fractional nonautonomous systems. Abstr. Appl. Anal. 2012, 2012, 476581. [Google Scholar] [CrossRef]
- Mozyrska, D.; Wyrwas, M. The Z-transform method and delta type fractional difference operators. Discret. Dyn. Nat. Soc. 2015, 2015, 12. [Google Scholar] [CrossRef]
- Mozyrska, D.; Wyrwas, M. Explicit criteria for stability of fractional h-difference two-dimensional systems. Int. J. Dyn. Control 2017, 5, 4–9. [Google Scholar] [CrossRef]
- Ferreira, R.A.C.; Torres, D.F.M. Fractional h-difference equations arising from the calculus of variations. Appl. Anal. Discret. Math. 2011, 5, 110–121. [Google Scholar] [CrossRef]
- Ferreira, R.A.C. Existence and uniqueness of solution to some discrete fractional boundary value problems of order less than one. J. Differ. Equ. Appl. 2013, 19, 712–718. [Google Scholar] [CrossRef]
- Ferreira, R.A.C.; Goodrich, C.S. Positive solution for a discrete fractional periodic boundary value problem. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 2012, 19, 545–557. [Google Scholar]
- Goodrich, C.S. Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions. Comput. Math. Appl. 2011, 61, 191–202. [Google Scholar] [CrossRef]
- Goodrich, C.S. On a discrete fractional three-point boundary value problem. J. Differ. Equ. Appl. 2012, 18, 397–415. [Google Scholar] [CrossRef]
- Goodrich, C.S. A convexity result for fractional differences. Appl. Math. Lett. 2014, 35, 58–62. [Google Scholar] [CrossRef]
- Goodrich, C.S. The relationship between sequential fractional difference and convexity. Appl. Anal. Discret. Math. 2016, 10, 345–365. [Google Scholar] [CrossRef]
- Dahal, R.; Goodrich, C.S. A monotonicity result for discrete fractional difference operators. Arch. Math. 2014, 102, 293–299. [Google Scholar] [CrossRef]
- Erbe, L.; Goodrich, C.S.; Jia, B.; Peterson, A. Survey of the qualitative properties of fractional difference operators: Monotonicity, convexity, and asymptotic behavior of solutions. Adv. Differ. Equ. 2016, 2016, 43. [Google Scholar] [CrossRef]
- Chen, F.; Luo, X.; Zhou, Y. Existence results for nonlinear fractional difference equation. Adv. Differ. Equ. 2011, 2011, 713201. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, Y. Existence and Ulam stability of solutions for discrete fractional boundary value problem. Discret. Dyn. Nat. Soc. 2013, 2013, 459161. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, X. Thee difference between a class of discrete fractional and integer order boundary value problems. Commun. Nonlinear Sci. 2014, 19, 4057–4067. [Google Scholar] [CrossRef]
- Lv, W. Solvability for discrete fractional boundary value problems with a p-laplacian operator. Discret. Dyn. Nat. Soc. 2013, 2013, 679290. [Google Scholar] [CrossRef]
- Lv, W. Solvability for a discrete fractional three-point boundary value problem at resonance. Abstr. Appl. Anal. 2014, 2014, 601092. [Google Scholar] [CrossRef]
- Lv, W.; Feng, J. Nonlinear discrete fractional mixed type sum-difference equation boundary value problems in Banach spaces. Adv. Differ. Equ. 2014, 2014, 184. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.Q.; Cui, Y.Q.; Zhao, X.L. Multiple solutions to fractional difference boundary value problems. Abstr. Appl. Anal. 2014, 2014, 879380. [Google Scholar] [CrossRef]
- Chen, H.Q.; Jin, Z.; Kang, S.G. Existence of positive solutions for Caputo fractional difference equation. Adv. Differ. Equ. 2015, 2015, 44. [Google Scholar] [CrossRef]
- Kang, S.G.; Li, Y.; Chen, H.Q. Positive solutions to boundary value problems of fractional difference equations with nonlocal conditions. Adv. Differ. Equ. 2014, 2014, 7. [Google Scholar] [CrossRef]
- Dong, W.; Xu, J.; Regan, D.O. Solutions for a fractional difference boundary value problem. Adv. Differ. Equ. 2013, 2013, 319. [Google Scholar] [CrossRef] [Green Version]
- Sitthiwirattham, T.; Tariboon, J.; Ntouyas, S.K. Existence Results for fractional difference equations with three-point fractional sum boundary conditions. Discret. Dyn. Nat. Soc. 2013, 2013, 104276. [Google Scholar] [CrossRef]
- Sitthiwirattham, T.; Tariboon, J.; Ntouyas, S.K. Boundary value problems for fractional difference equations with three-point fractional sum boundary conditions. Adv. Differ. Equ. 2013, 2013, 296. [Google Scholar] [CrossRef] [Green Version]
- Sitthiwirattham, T. Existence and uniqueness of solutions of sequential nonlinear fractional difference equations with three-point fractional sum boundary conditions. Math. Methods Appl. Sci. 2015, 38, 2809–2815. [Google Scholar] [CrossRef]
- Sitthiwirattham, T. Boundary value problem for p-Laplacian Caputo fractional difference equations with fractional sum boundary conditions. Math. Methods Appl. Sci. 2016, 39, 1522–1534. [Google Scholar] [CrossRef]
- Chasreechai, S.; Kiataramkul, C.; Sitthiwirattham, T. On nonlinear fractional sum-difference equations via fractional sum boundary conditions involving different orders. Math. Probl. Eng. 2015, 2015, 519072. [Google Scholar] [CrossRef]
- Reunsumrit, J.; Sitthiwirattham, T. Positive solutions of three-point fractional sum boundary value problem for Caputo fractional difference equations via an argument with a shift. Positivity 2016, 20, 861–876. [Google Scholar] [CrossRef]
- Reunsumrit, J.; Sitthiwirattham, T. On positive solutions to fractional sum boundary value problems for nonlinear fractional difference equations. Math. Methods Appl. Sci. 2016, 39, 2737–2751. [Google Scholar] [CrossRef]
- Soontharanon, J.; Jasthitikulchai, N.; Sitthiwirattham, T. Nonlocal Fractional Sum Boundary Value Problems for Mixed Types of Riemann-Liouville and Caputo Fractional Difference Equations. Dyn. Syst. Appl. 2016, 25, 409–414. [Google Scholar]
- Laoprasittichok, S.; Sitthiwirattham, T. On a Fractional Difference-Sum Boundary Value Problems for Fractional Difference Equations Involving Sequential Fractional Differences via Different Orders. J. Comput. Anal. Appl. 2017, 23, 1097–1111. [Google Scholar]
- Kaewwisetkul, B.; Sitthiwirattham, T. On Nonlocal Fractional Sum-Difference Boundary Value Problems for Caputo Fractional Functional Difference Equations with Delay. Adv. Differ. Equ. 2017, 2017, 219. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions. Chaos Soliton Fractals 2016, 83, 234–241. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions. Appl. Math. Comput. 2015, 266, 615–622. [Google Scholar] [CrossRef]
- Henderson, J.; Luca, R. Nonexistence of positive solutions for a system of coupled fractional boundary value problems. Bound. Value Probl. 2015, 2015, 138. [Google Scholar] [CrossRef] [Green Version]
- Henderson, J.; Luca, R.; Tudorache, A. On a system of fractional differential equations with coupled integral boundary conditions. Fract. Calc. Appl. Anal. 2015, 18, 361–386. [Google Scholar] [CrossRef]
- Wang, J.R.; Zhang, Y. Analysis of fractional order differential coupled systems. Math. Methods Appl. Sci. 2015, 38, 3322–3338. [Google Scholar] [CrossRef]
- Su, X. Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 2009, 22, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Ascione, G.; Leonenko, N.; Pirozzi, E. Fractional Queues with Catastrophes and Their Transient Behaviour. Mathematics 2018, 6, 159. [Google Scholar] [CrossRef]
- Pan, Y.; Han, Z.; Sun, S.; Zhao, Y. The Existence of Solutions to a System of Discrete Fractional Boundary Value Problems. Abstr. Appl. Anal. 2012, 2012, 707631. [Google Scholar] [CrossRef]
- Goodrich, C.S. Existence of a positive solution to a system of discrete fractional boundary value problems. Appl. Math. Comput. 2011, 217, 4740–4753. [Google Scholar] [CrossRef]
- Dahal, R.; Duncan, D.; Goodrich, C.S. Systems of semipositone discrete fractional boundary value problems. J. Differ. Equ. Appl. 2014, 20, 473–491. [Google Scholar] [CrossRef]
- Goodrich, C.S. Systems of discrete fractional boundary value problems with nonlinearities satisfying no growth conditions. J. Differ. Equ. Appl. 2015, 21, 437–453. [Google Scholar] [CrossRef]
- Goodrich, C.S. Coupled systems of boundary value problems with nonlocal boundary conditions. Appl. Math. Lett. 2015, 41, 17–22. [Google Scholar] [CrossRef]
- Kunnawuttipreechachan, E.; Promsakon, C.; Sitthiwirattham, T. Nonlocal fractional sum boundary value problems for a coupled system of fractional sum-difference equations. Dyn. Syst. Appl. 2019, 28, 73–92. [Google Scholar] [CrossRef]
- Griffel, D.H. Applied Functional Analysis; Ellis Horwood Publishers: Chichester, UK, 1981. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soontharanon, J.; Chasreechai, S.; Sitthiwirattham, T. A Coupled System of Fractional Difference Equations with Nonlocal Fractional Sum Boundary Conditions on the Discrete Half-Line. Mathematics 2019, 7, 256. https://doi.org/10.3390/math7030256
Soontharanon J, Chasreechai S, Sitthiwirattham T. A Coupled System of Fractional Difference Equations with Nonlocal Fractional Sum Boundary Conditions on the Discrete Half-Line. Mathematics. 2019; 7(3):256. https://doi.org/10.3390/math7030256
Chicago/Turabian StyleSoontharanon, Jarunee, Saowaluck Chasreechai, and Thanin Sitthiwirattham. 2019. "A Coupled System of Fractional Difference Equations with Nonlocal Fractional Sum Boundary Conditions on the Discrete Half-Line" Mathematics 7, no. 3: 256. https://doi.org/10.3390/math7030256
APA StyleSoontharanon, J., Chasreechai, S., & Sitthiwirattham, T. (2019). A Coupled System of Fractional Difference Equations with Nonlocal Fractional Sum Boundary Conditions on the Discrete Half-Line. Mathematics, 7(3), 256. https://doi.org/10.3390/math7030256