Role of Graphic Integer Sequence in the Determination of Graph Integrity
Abstract
:1. Introduction
2. Preliminaries
3. Known Results on Graph Integrity
- (a)
- I(G) ≤ α (G) + 1
- (b)
- I(G) ≥ δ (G) +1 [ where δ (G) =minimum vertex degree of G]
- (c)
- I(G) ≥ χ (G) [where χ (G) = chromatic number of G]
- (d)
- I(G) = κ (G) +1 if and only if κ (G) = α (G) [where κ (G) = connectivity of G].
- (a)
- The complete graph Kn is n [where n is the number of vertices]
- (b)
- The null graph is 1.
- (c)
- The Pn is −2.
- (d)
- The cycle Cn is −1.
- (e)
- The complete bipartite graph Kt,p is 1 + min {t, p}.
4. Related Works
5. Proposed Algorithm
Algorithm 1. Calculate Graph Integrity |
Input: Graphic integer sequence x = d1, d2, …, dn in non-increasing order, number of vertices (n). Output: Integrity (I(G)) of the graph G produced from x. Begin Step 1: x= d1 ≥ d2 ≥ d3 ≥ … ≥ dn; Step 2: If e=n(n − 1)/2, then I(G)=n, goto step 9; (where e = (d1+d2…+dn)/2). Step 3: If e=0, then I(G)=1, goto step 9. Step 4: Compute the complement of the given graphic integer sequence. x’ = (n − 1) −dn ≥ (n − 1) − dn−1 ≥ … ≥ (n − 1) − d1, k = (n − 1) − dn. Suppose, (n − 1) −dn= p1, (n − 1) − dn−1 = p2,…, (n − 1) − d1 = pn. Now, x’ = p1 ≥ p2 ≥ … ≥ pn and k = p1. Step 5: If (p1 ≥ p2 ≥ … ≥ pk≥ (k − 1)), then Continue. Else Goto step 7. End If Step 6: If (pk+1 ≥ pk+2 ≥ … ≥ pn) is graphic (using the Havel–Hakimi [7] algorithm) after drop-m (refer Section 2) Then Goto step 8. Else Continue. End If Step 7: If k ≠ 0, k=k − 1, goto step 5. Step 8: Compute minimal vertex cover (VC) = n-k and I(G)= |VC| +1. Step 9: End |
6. Illustration with Example
- First, compute x’ = 4,3,2,2,2,2,2,1.
- As d1′ = 4, so k = 4,
- As p3 = 2 <3, so condition of step 5 failed.
- Now, in next iteration k=k − 1=3 (according to step 7 of the algorithm),
- As p1 ≥ p2 ≥ p3 ≥ 2,
- m = ∑(pi− k+1) [1 ≤ i ≤ 3] = (2 + 1 + 0) = 3
- After drop-m from (p4, p5, p6, p7, p8) the new sequence x’’ = (2,1,1,1,1) which is graphic.
- So, the sequence contains VC = (8-3) = 5 and integrityI(G) = 6.
7. Experimental Results
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ye, Q. On vulnerability of power and total graphs. WSEAS Trans. Math. 2012, 1028–1038. [Google Scholar]
- Shang, Y. Vulnerability of networks: Fractional percolation on random graphs. Phys. Rev. E 2014, 89, 012813. [Google Scholar] [CrossRef] [PubMed]
- Bagga, K.S.; Beineke, L.W.; Goddard, W.D.; Lipman, M.J.; Pippert, R.E. A survey of integrity. Discret. Appl. Math. 1992, 37, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Moazzami, D. Vulnerability in graphs-A comparative survey. J. Comb. Math. Comb. Comput. 1999, 30, 23–32. [Google Scholar]
- Barefoot, C.A.; Entringer, R.; Swart, H. Vulnerability in graphs—A comparative survey. J. Comb. Math. Comb. Comput. 1987, 1, 13–22. [Google Scholar]
- Deo, N. Graph Theory with Applications to Engineering and Computer Science; Courier Dover Publications: New York, NY, USA, 2017. [Google Scholar]
- Hakimi, S.L. On realizability of a set of integers as degrees of the vertices of a linear graph. I. J. Soc. Ind. Appl. Math. 1962, 10, 496–506. [Google Scholar] [CrossRef]
- Sloane, N.J.A. A Handbook of Integer Sequences; Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Sloane, N.J. The On-Line Encyclopedia of Integer Sequences. Available online: https://arxiv.org/pdf/math/0312448.pdf (accessed on 10 January 2019).
- Knuth, D.E. The Art of Computer Programming; Combinatorial Algorithms, Part 1; Addison-Wesley Professional: Boston, MA, USA, 2011; Volume 4A. [Google Scholar]
- Bondy, J.A.; Murty, U.S.R. Graph Theory with Applications; Macmillan: London, UK, 1976; Volume 290. [Google Scholar]
- Basuli, K. Graphic Integer Sequence and Its Applications. Ph.D. Thesis, University of Calcutta, Kolkata, India, 2017. [Google Scholar]
- Cozzens, M.B.; Moazzami, D.; Stueckle, S. The tenacity of the Harary graphs. J. Comb. Math. Comb. Comput. 1994, 16, 33–56. [Google Scholar]
- Basuli, K. Role of Degree Sequence in determination of Maximal Clique of a Graph. J. Glob. Res. Comput. Sci. 2010, 1, 5–7. [Google Scholar]
- Rao, A.R. Proceedings of the Symposium on Graph Theory held at the Indian Statistical Institute; Macmillan: London, UK, 1979. [Google Scholar]
- Chartrand, G.; Zhang, P. A First Course in Graph Theory; Courier Corporation: Washington, DC, USA, 2013. [Google Scholar]
- Shang, Y. Large dicliques in a directed inhomogeneous random graph. Int. J. Comput. Math. 2013, 90, 445–456. [Google Scholar] [CrossRef]
- Asratian, A.S.; Denley, T.M.; Häggkvist, R. Bipartite Graphs and Their Applications; Cambridge University Press: Cambridge, UK, 1998; Volume 131. [Google Scholar]
- Scheinerman, E. Mathematics: A Discrete Introduction; Nelson Education: Scarborough, ON, Canada, 2012. [Google Scholar]
- Doty, L.L. Extremal connectivity and vulnerability in graphs. Networks 1989, 19, 73–78. [Google Scholar] [CrossRef]
- Jun, W.U.; Barahona, M.; Yue-Jin, T.; Hong-Zhong, D. Natural connectivity of complex networks. Chin. Phys. Lett. 2010, 27, 078902. [Google Scholar] [CrossRef]
- Fujita, S.; Furuya, M. Safe Number and Integrity of Graphs. Discrete Appl. Math. 2018, 247, 398–406. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Y.; Gu, X. Spectrum bounds for the scattering number, integrity, tenacity of regular graphs. Future Gener. Comput. Syst. 2018, 83, 450–453. [Google Scholar] [CrossRef]
- Saravanan, M.; Sujatha, R.; Sundareswaran, R.; Sahoo, S.; Pal, M. Concept of integrity and its value of fuzzy graphs. J. Intell. Fuzzy Syst. 2018, 34, 2429–2439. [Google Scholar] [CrossRef]
- Drange, P.G.; Dregi, M.; van’t Hof, P. On the computational complexity of vertex integrity and component order connectivity. Algorithmica 2016, 76, 1181–1202. [Google Scholar] [CrossRef]
- Mahde, S.S.; Mathad, V.; Sahal, A.M. Hub-integrity of graphs. Bull. Int. Math. Virtual Inst. 2015, 5, 57–64. [Google Scholar]
- Vaidya, S.K.; Kothari, N.J. Some new results on domination integrity of graphs. Open J. Discrete Math. 2012, 2, 96. [Google Scholar] [CrossRef]
- Moazzami, D. Towards a measure of vulnerability, tenacity of a Graph. J. Algorithms Comput. 2016, 48, 149–153. [Google Scholar]
- Aslan, E. A Measure of Graphs Vulnerability: Edge Scattering Number. Bull. Soc. Math. Banja Luka 2014, 4, 53–60. [Google Scholar]
- Bacak-Turan, G.; Şenoğlu, M.Ü.; Altundağ, F.N. Neighbor Rupture Degree of Some Middle Graphs. SüleymanDemirelÜniversitesi Fen BilimleriEnstitüsü Dergisi 2018, 22, 75–80. [Google Scholar] [CrossRef]
- Aytac, A. The common-neighbourhood of a graph. Boletim da SociedadeParanaense de Matemática 2017, 35, 23–32. [Google Scholar] [CrossRef]
- Bacak-Turan, G.; Demirtekin, E. Neighbor Rupture Degree of Gear Graphs. CBU J. Sci. 2017, 12, 319–323. [Google Scholar]
- Aslan, E. Weak-Rupture Degree of Graphs. Int. J. Found. Comput. Sci. 2016, 27, 725–738. [Google Scholar] [CrossRef]
- Aslan, E.; Bacak-Turan, G. Mean rupture degree of graphs. Univ. Politeh. Buchar. Sci. Bull.-Ser. A-Appl. Math. Phys. 2016, 78, 233–242. [Google Scholar]
- Clark, L.H.; Entringer, R.C.; Fellows, M.R. Computational complexity of integrity. J. Comb. Math. Comb. Comput. 1987, 2, 179–191. [Google Scholar]
- Li, F.; Li, X. Computing the rupture degrees of graphs. In Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks, Hong Kong, China, 10–12 May 2004; pp. 368–373. [Google Scholar]
- Zhang, S.; Li, X.; Han, X. Computing the scattering number of graphs. Int. J. Comput. Math. 2002, 79, 179–187. [Google Scholar] [CrossRef]
- Shang, Y. Biased edge failure in scale-free networks based on natural connectivity. Indian J. Phys. 2012, 86, 485–488. [Google Scholar] [CrossRef]
- Erdds, P.; R&WI, A. On random graphs I. Publ. Math. Debrecen 1959, 6, 290–297. [Google Scholar]
- Albrt, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Modern Phys. 2002, 74, 47. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’networks. Nature 1998, 393, 440. [Google Scholar] [CrossRef]
- The R Manuals. Available online: https://cran.r-project.org/manuals.html (accessed on 10 January 2019).
- Burchett, I. Quantifying Network Reliability through Finding an Upper Bound for Graph Integrity Using Graph Coloring. Available online: https://digitalcommons.wku.edu/cgi/viewcontent.cgi?referer=https://www.google.com.au/&httpsredir=1&article=1229&context=stu_hon_theses (accessed on 10 January 2019).
- Krebs, V.E. Mapping networks of terrorist cells. Connections 2002, 24, 43–52. [Google Scholar]
- Kidwai, F.A.; Marwah, B.R.; Deb, K.; Karim, M.R. A genetic algorithm based bus scheduling model for transit network. In Proceedings of the Eastern Asia Society for Transportation Studies, Bangkok, Thailand, 21–24 September 2005; Volume 5, pp. 477–489. Available online: https://www.researchgate.net/profile/Mohamed_Karim/publication/228960835_A_Genetic_Algorithm_Based_Bus_Scheduling_Model_for_Transit_Network/links/54130f060cf2bb7347db1a0c.pdf (accessed on 15 January 2019).
- Shang, Y. Estrada and L-Estrada indices of edge-independent random graphs. Symmetry 2015, 7, 1455–1462. [Google Scholar] [CrossRef]
Networks | Number of Vertices | Probability of Connections | Graph Integrity by Method 1 | Graph Integrity by Proposed Method | Deviation of Integrity Measure (Column 4–Column 3) | Time Complexity of Method 1 (in Milliseconds) | Time Complexity of Proposed Method (in Milliseconds) |
---|---|---|---|---|---|---|---|
Random Networks | 100 | 0.6 | 83 | 60 | 23 | 0.0 | 1.0 |
0.5 | 86 | 50 | 36 | 1.0 | 0.0 | ||
0.4 | 80 | 48 | 32 | 1.0 | 0.0 | ||
200 | 0.6 | 188 | 119 | 69 | 1.0 | 1.0 | |
0.5 | 177 | 100 | 77 | 1.0 | 1.0 | ||
0.4 | 182 | 98 | 84 | 1.0 | 1.0 | ||
300 | 0.6 | 281 | 178 | 103 | 2.0 | 7.0 | |
0.5 | 273 | 150 | 123 | 2.0 | 4.0 | ||
0.4 | 263 | 146 | 117 | 2.0 | 4.0 | ||
Valdis Krebs’ Initial Mapping of the 9/11 Hijackers’ Network [44] | 19 | 12 | 9 | 3 | 0.0 | 0.0 | |
Road Network of Burdwan, W. Bengal, India [45] | 60 | 30 | 25 | 5 | 0.0 | 0.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sensarma, D.; Sen Sarma, S. Role of Graphic Integer Sequence in the Determination of Graph Integrity. Mathematics 2019, 7, 261. https://doi.org/10.3390/math7030261
Sensarma D, Sen Sarma S. Role of Graphic Integer Sequence in the Determination of Graph Integrity. Mathematics. 2019; 7(3):261. https://doi.org/10.3390/math7030261
Chicago/Turabian StyleSensarma, Debajit, and Samar Sen Sarma. 2019. "Role of Graphic Integer Sequence in the Determination of Graph Integrity" Mathematics 7, no. 3: 261. https://doi.org/10.3390/math7030261
APA StyleSensarma, D., & Sen Sarma, S. (2019). Role of Graphic Integer Sequence in the Determination of Graph Integrity. Mathematics, 7(3), 261. https://doi.org/10.3390/math7030261