Hyers–Ulam Stability and Existence of Solutions for Differential Equations with Caputo–Fabrizio Fractional Derivative
Abstract
:1. Introduction
2. Preliminaries
3. Stability Results for the Linear Equation
4. Existence and Stability Results for the Nonlinear Equation
- is continuous.
- There exists a such that
- There exists a constant such that
5. Examples
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations, Mathematics in Science and Engineering; Academic Press: San Diego, CA, USA, 1999; Volume 198. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Application of Fractional Calculuts to Dynamics of Particles, Fields and Media; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Abbas, S.; Benchohra, M.; Darwish, M.A. New stability results for partial fractional differential inclusions with not instantaneous impulses. Fract. Calc. Appl. Anal. 2015, 18, 172–191. [Google Scholar] [CrossRef]
- Li, M.; Wang, J. Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl. Math. Comput. 2018, 324, 254–265. [Google Scholar] [CrossRef]
- Liu, S.; Wang, J.; Zhou, Y.; Fečkan, M. Iterative learning control with pulse compensation for fractional differential equations. Math. Slov. 2018, 68, 563–574. [Google Scholar] [CrossRef]
- Wang, J.; Ibrahim, A.G.; O’Regan, D. Topological structure of the solution set for fractional non-instantaneous impulsive evolution inclusions. J. Fixed Point Theory Appl. 2018, 20, 59. [Google Scholar] [CrossRef]
- Luo, D.; Wang, J.; Shen, D. Learning formation control for fractional-order multi-agent systems. Math. Meth. Appl. Sci. 2018, 41, 5003–5014. [Google Scholar] [CrossRef]
- Peng, S.; Wang, J.; Yu, X. Stable manifolds for some fractional differential equations. Nonlinear Anal. Model. Control 2018, 23, 642–663. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J. Continuous dependence of solutions of integer and fractional order non-instantaneous impulsive equations with random impulsive and junction points. Mathematics 2019, 7, 331. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J. Numerical analysis for a class of Navier–Stokes equations with time fractional derivatives. Appl. Math. Comput. 2018, 336, 481–489. [Google Scholar]
- Zhu, B.; Liu, L.; Wu, Y. Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equation with delay. Appl. Math. Lett. 2016, 61, 73–79. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Wu, Y. Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal. 2011, 74, 3599–3605. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y. Existence results for multiple positive solutions of nonlinear higher order perturbed fractional differential equations with derivatives. Appl. Math. Comput. 2012, 219, 1420–1433. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Zhang, X.; Wu, Y. Positive solutions of a fractional semipositone differential system arising from the study of HIV infection models. Appl. Math. Comput. 2015, 258, 312–324. [Google Scholar]
- Zhang, X.; Liu, L.; Wu, Y. Variational structure and multiple solutions for a fractional advection-dispersion equation. Comput. Math. Appl. 2014, 68, 1794–1805. [Google Scholar] [CrossRef]
- Zhang, X.; Mao, C.; Liu, L.; Wu, Y. Exact iterative solution for an abstract fractional dynamic system model for bioprocess. Qual. Theory Dyn. Syst. 2017, 16, 205–222. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y.; Wiwatanapataphee, B. Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion. Appl. Math. Lett. 2017, 66, 1–8. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, L.; Wu, Y. Multiple positive solutions of singular fractional differential system involving Stieltjes integral conditions. Electron. J. Qual. Theory Differ. Equ. 2012, 43, 1–18. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Atangana, A.; Nieto, J.J. Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel. Adv. Mech. Eng. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Losada, J.; Nieto, J.J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 87–92. [Google Scholar]
- Baleanu, D.; Mousalou, A.; Rezapour, S. On the existence of solutions for some infinite coefficient-symmetric Caputo–Fabrizio fractional integro-differential equations. Bound. Value Prob. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Franc, E.; Goufo, D. Application of the Caputo–Fabrizio fractional derivative without singular kernel to Korteweg–de Vries–Burgers equations. Math. Model. Anal. 2016, 21, 188–198. [Google Scholar]
- Rezaei, H.; Jung, S.M.; Rassias, T.M. Laplace transform and Hyers–Ulam stability of linear differential equations. J. Math. Anal. Appl. 2013, 403, 244–251. [Google Scholar] [CrossRef]
- Alqifiary, Q.H.; Jung, S.M. Laplace transform and generalized Hyers–Ulam stability of linear differential equations. Electron. J. Diff. Equ. 2014, 2014, 1–11. [Google Scholar]
- Wang, J.; Li, X.Z. A uniform method to Ulam-Hyers stability for some Linear fractional equations. Mediterr. J. Math. 2016, 13, 625–635. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y. Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations. Optimization 2014, 63, 1181–1190. [Google Scholar] [CrossRef]
- Capelas de Oliveira, E.; da C. Sousa, J.V. Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations. Result Math. 2018, 73, 111. [Google Scholar] [CrossRef]
- da C. Sousa, J.V.; Capelas de Oliveira, E. Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl. Math. Lett. 2018, 81, 50–56. [Google Scholar]
- da C. Sousa, J.V.; Kucche, K.D.; Capelas de Oliveira, E. Stability of ψ-Hilfer impulsive fractional differential equations. Appl. Math. Lett. 2018, 88, 73–80. [Google Scholar]
- Wang, J.; Zhou, Y.; Fečkan, M. Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math. Appl. 2012, 64, 3389–3405. [Google Scholar] [CrossRef]
- da C. Sousa, J.V.; Capelas de Oliveira, E. On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator. J. Fixed Point Theory Appl. 2018, 20, 5–21. [Google Scholar]
- Shah, K.; Ali, A.; Bushnaq, S. Hyers–Ulam stability analysis to implicit Cauchy problem of fractional differential equations with impulsive conditions. Math. Meth. Appl. Sci. 2018, 41, 8329–8343. [Google Scholar] [CrossRef]
- Ali, Z.; Zada, A.; Shah, K. Ulam stability to a toppled systems of nonlinear implicit fractional order boundary value problem. Bound. Value Prob. 2018, 2018, 175. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.; O’Regan, D. Ulam-Hyers-Mittag-Leffler stability for ψ-Hilfer fractional-order delay differential equations. Adv. Differ. Equ. 2019, 2019, 50. [Google Scholar] [CrossRef]
- Wang, J.; Lv, L.; Zhou, Y. Ulam stability and data depenaence for fractional differential equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 2011, 63, 1–10. [Google Scholar]
- Wang, J.; Zhou, Y.; Fečkan, M. Abstract Cauchy problem for fractional differential equations. Nonlinear Dyn. 2013, 71, 685–700. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Fečkan, M.; O’Regan, D.; Wang, J. Hyers–Ulam Stability and Existence of Solutions for Differential Equations with Caputo–Fabrizio Fractional Derivative. Mathematics 2019, 7, 333. https://doi.org/10.3390/math7040333
Liu K, Fečkan M, O’Regan D, Wang J. Hyers–Ulam Stability and Existence of Solutions for Differential Equations with Caputo–Fabrizio Fractional Derivative. Mathematics. 2019; 7(4):333. https://doi.org/10.3390/math7040333
Chicago/Turabian StyleLiu, Kui, Michal Fečkan, D. O’Regan, and JinRong Wang. 2019. "Hyers–Ulam Stability and Existence of Solutions for Differential Equations with Caputo–Fabrizio Fractional Derivative" Mathematics 7, no. 4: 333. https://doi.org/10.3390/math7040333
APA StyleLiu, K., Fečkan, M., O’Regan, D., & Wang, J. (2019). Hyers–Ulam Stability and Existence of Solutions for Differential Equations with Caputo–Fabrizio Fractional Derivative. Mathematics, 7(4), 333. https://doi.org/10.3390/math7040333