Dual Hesitant Pythagorean Fuzzy Heronian Mean Operators in Multiple Attribute Decision Making
Abstract
:1. Introduction
2. Preliminaries
2.1. Pythagorean Fuzzy Set
2.2. Dual Hesitant Pythagorean Fuzzy Set
- If, thenis superior to, denoted by;
- If, then:
- (1)
- If, thenis equivalent to, denoted by;
- (2)
- If, thenis superior to, denoted by.
2.3. The Heronian Mean Operator
3. Dual Hesitant Pythagorean Fuzzy Heronian Mean Operators
3.1. The DHPFGHM Aggregation Operator
3.2. The DHPFGWHM Aggregation Operator
3.3. The DHPFGGHM Aggregation Operator
3.4. The DHPFGGWHM Aggregation Operator
4. An Approach to MADM with DHPFNs Information
5. Numerical Example and Comparative Analysis
5.1. Numerical Example
5.2. Influence of Parameters on the Final Result
5.3. Comparative Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–356. [Google Scholar]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Zhou, W.; Xu, Z.S. Extended Intuitionistic Fuzzy Sets Based on the Hesitant Fuzzy Membership and their Application in Decision Making with Risk Preference. Int. J. Intell. Syst. 2018, 33, 417–443. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, H.; Fan, J.; Chen, C.W.; Lan, R.; Li, N. Intuitionistic fuzzy set approach to multi-objective evolutionary clustering with multiple spatial information for image segmentation. Neurocomput. 2018, 312, 296–309. [Google Scholar] [CrossRef]
- Zhang, Z.M. Geometric Bonferroni means of interval-valued intuitionistic fuzzy numbers and their application to multiple attribute group decision making. Neural Comput. Appl. 2018, 29, 1139–1154. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Z.; Kong, H. Some Normal Intuitionistic Fuzzy Heronian Mean Operators Using Hamacher Operation and Their Application. Symmetry 2018, 10, 199. [Google Scholar] [CrossRef]
- Li, Z.; Gao, H.; Wei, G. Methods for Multiple Attribute Group Decision Making Based on Intuitionistic Fuzzy Dombi Hamy Mean Operators. Symmetry 2018, 10, 574. [Google Scholar] [CrossRef]
- Wei, G.W. TODIM Method for Picture Fuzzy Multiple Attribute Decision Making. Informatica 2018, 29, 555–566. [Google Scholar] [CrossRef]
- Wang, J.; Wei, G.W.; Lu, M. TODIM Method for Multiple Attribute Group Decision Making under 2-Tuple Linguistic Neutrosophic Environment. Symmetry 2018, 10, 486. [Google Scholar] [CrossRef]
- Zhai, Y.L.; Xu, Z.S.; Liao, H.C. Measures of Probabilistic Interval-Valued Intuitionistic Hesitant Fuzzy Sets and the Application in Reducing Excessive Medical Examinations. IEEE Trans. Fuzzy Syst. 2018, 26, 1651–1670. [Google Scholar]
- Li, Z.; Wei, G.; Lu, M. Pythagorean Fuzzy Hamy Mean Operators in Multiple Attribute Group Decision Making and Their Application to Supplier Selection. Symmetry 2018, 10, 505. [Google Scholar] [CrossRef]
- Wu, L.; Wei, G.; Gao, H.; Wei, Y. Some Interval-Valued Intuitionistic Fuzzy Dombi Hamy Mean Operators and Their Application for Evaluating the Elderly Tourism Service Quality in Tourism Destination. Mathematics 2018, 6, 294. [Google Scholar] [CrossRef]
- Wang, J.; Gao, H.; Wei, G.; Wei, Y. Methods for Multiple-Attribute Group Decision Making with q-Rung Interval-Valued Orthopair Fuzzy Information and Their Applications to the Selection of Green Suppliers. Symmetry 2019, 11, 56. [Google Scholar] [CrossRef]
- Wei, G.W.; Zhang, Z.P. Some single-valued neutrosophic Bonferroni power aggregation operators in multiple attribute decision making. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 863–882. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, H.; Wei, G.; Wei, Y.; Wei, C. Evaluation Based on Distance from Average Solution Method for Multiple Criteria Group Decision Making under Picture 2-Tuple Linguistic Environment. Mathematics 2019, 7, 243. [Google Scholar] [CrossRef]
- Wei, G.-W. Pythagorean Fuzzy Hamacher Power Aggregation Operators in Multiple Attribute Decision Making. Fundam. Inform. 2019, 166, 57–85. [Google Scholar] [CrossRef]
- Xu, Z.S. Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 2007, 15, 1179–1187. [Google Scholar]
- Xu, Z.; Yager, R.R. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 2006, 35, 417–433. [Google Scholar] [CrossRef]
- Hung, W.L.; Yang, M.S. Similarity measures of intuitionistic fuzzy sets based on L-p metric. Int. J. Approx. Reason. 2007, 46, 120–136. [Google Scholar] [CrossRef]
- Park, J.H.; Lim, K.M.; Park, J.S.; Kwun, Y.C. Distances between Interval-valued Intuitionistic Fuzzy Sets. In Proceedings of the International Symposium on Nonlinear Dynamics, Shanghai, China, 27–30 October 2007. [Google Scholar]
- Wei, G.-W. Maximizing deviation method for multiple attribute decision making in intuitionistic fuzzy setting. Knowl. Based Syst. 2008, 21, 833–836. [Google Scholar] [CrossRef]
- Hung, C.C.; Chen, L.H.; Ao, S.I. A Fuzzy TOPSIS Decision Making Model with Entropy Weight under Intuitionistic Fuzzy Environment. In Proceedings of the International of Multi Conference of Engineers and Computer Scientist (IMECS), Hong Kong, China, 18–20 March 2009. [Google Scholar]
- Luo, Y.J. IEEE, Projection Method for Multiple Attribute Decision Making with Uncertain Attribute Weights under Intuitionistic Fuzzy Environment. In Proceedings of the Chinese Control and Decision Conference, Guilin, China, 17–19 June 2009; pp. 2945–2948. [Google Scholar]
- Ye, J. Fuzzy cross entropy of interval-valued intuitionistic fuzzy sets and its optimal decision-making method based on the weights of alternatives. Syst. Appl. 2011, 38, 6179–6183. [Google Scholar] [CrossRef]
- Zhang, Z.M. Interval-Valued Intuitionistic Hesitant Fuzzy Aggregation Operators and Their Application in Group Decision-Making. J. Appl. Math. 2013, 2013. [Google Scholar] [CrossRef]
- Liao, H.C.; Xu, Z.S. Intuitionistic Fuzzy Hybrid Weighted Aggregation Operators. Int. J. Intell. Syst. 2014, 29, 971–993. [Google Scholar] [CrossRef]
- Liu, X.Y.; Ju, Y.B.; Yang, S.H. Hesitant intuitionistic fuzzy linguistic aggregation operators and their applications to multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 27, 1187–1201. [Google Scholar]
- Peng, J.-J.; Wang, J.-Q.; Wang, J.; Chen, X.-H. Multicriteria Decision-Making Approach with Hesitant Interval-Valued Intuitionistic Fuzzy Sets. Sci. J. 2014, 2014, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Huang, X.J. Hesitant triangular intuitionistic fuzzy information and its application to multi-attribute decision making problem. J. Nonlinear Sci. Appl. 2017, 10, 1012–1029. [Google Scholar] [CrossRef]
- Leśniak, A.; Kubek, D.; Plebankiewicz, E.; Zima, K.; Belniak, S. Fuzzy AHP Application for Supporting Contractors’ Bidding Decision. Symmetry 2018, 10, 642. [Google Scholar] [CrossRef]
- Adeel, A.; Akram, M.; Ahmed, I.; Nazar, K. Novel m-Polar Fuzzy Linguistic ELECTRE-I Method for Group Decision-Making. Symmetry 2019, 11, 471. [Google Scholar] [CrossRef]
- Turskis, Z.; Goranin, N.; Nurusheva, A.; Boranbayev, S. A Fuzzy WASPAS-Based Approach to Determine Critical Information Infrastructures of EU Sustainable Development. Sustainability 2019, 11, 424. [Google Scholar] [CrossRef]
- Ziemba, P.; Becker, J. Analysis of the Digital Divide Using Fuzzy Forecasting. Symmetry 2019, 11, 166. [Google Scholar] [CrossRef]
- Hu, C.-K.; Liu, F.-B. A Hybrid Fuzzy DEA/AHP Methodology for Ranking Units in a Fuzzy Environment. Symmetry 2017, 9, 273. [Google Scholar] [CrossRef]
- Ziemba, P.; Jankowski, J.; Wątróbski, J. Online Comparison System with Certain and Uncertain Criteria Based on Multi-criteria Decision Analysis Method. In Text, Speech and Dialogue; Springer Nature: Heidelberger, Germany, 2017; Volume 10449, pp. 579–589. [Google Scholar]
- Diouf, M.; Kwak, C. Fuzzy AHP, DEA, and Managerial Analysis for Supplier Selection and Development; From the Perspective of Open Innovation. Sustainability 2018, 10, 3779. [Google Scholar] [CrossRef]
- Dong, J.; Li, R.; Huang, H. Performance Evaluation of Residential Demand Response Based on a Modified Fuzzy VIKOR and Scalable Computing Method. Energies 2018, 11, 1097. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J. Optimal Portfolio for LNG Importation in Korea Using a Two-Step Portfolio Model and a Fuzzy Analytic Hierarchy Process. Energies 2018, 11, 3049. [Google Scholar] [CrossRef]
- Chou, Y.C.; Yen, H.Y.; Dang, V.T.; Sun, C.C. Assessing the Human Resource in Science and Technology for Asian Countries: Application of Fuzzy AHP and Fuzzy TOPSIS. Symmetry 2019, 11, 251. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean Fuzzy Subsets. In Proceedings of the Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, Alberta, Canada, 24–28 June 2013; pp. 57–61. [Google Scholar]
- Yager, R.R. Pythagorean Membership Grades in Multicriteria Decision Making. IEEE Trans. Syst. 2014, 22, 958–965. [Google Scholar] [CrossRef]
- Zhang, X.L.; Xu, Z.S. Extension of TOPSIS to Multiple Criteria Decision Making with Pythagorean Fuzzy Sets. Int. J. Intell. Syst. 2014, 29, 1061–1078. [Google Scholar] [CrossRef]
- Peng, X.; Yang, Y. Some Results for Pythagorean Fuzzy Sets. Int. J. Intell. Syst. 2015, 30, 1133–1160. [Google Scholar] [CrossRef]
- Reformat, M.Z.; Yager, R.R. Suggesting Recommendations Using Pythagorean Fuzzy Sets illustrated Using Netflix Movie Data. In Communications in Computer and Information Science; Springer Nature: Basingstoke, UK, 2014; Volume 442, pp. 546–556. [Google Scholar]
- Gou, X.J.; Xu, Z.S.; Ren, P.J. The Properties of Continuous Pythagorean Fuzzy Information. Int. J. Intell. Syst. 2016, 31, 401–424. [Google Scholar] [CrossRef]
- Garg, H. A New Generalized Pythagorean Fuzzy Information Aggregation Using Einstein Operations and Its Application to Decision Making. Int. J. Intell. Syst. 2016, 31, 886–920. [Google Scholar] [CrossRef]
- Zeng, S.Z.; Chen, J.P.; Li, X.S. A Hybrid Method for Pythagorean Fuzzy Multiple-Criteria Decision Making. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 403–422. [Google Scholar] [CrossRef]
- Ren, P.J.; Xu, Z.S.; Gou, X.J. Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft Comput. 2016, 42, 246–259. [Google Scholar] [CrossRef]
- Liang, D.; Zhang, Y.; Xu, Z.; Darko, A.P. Pythagorean fuzzy Bonferroni mean aggregation operator and its accelerative calculating algorithm with the multithreading. Int. J. Intell. Syst. 2018, 33, 615–633. [Google Scholar] [CrossRef]
- Liang, D.; Xu, Z.; Darko, A.P. Projection Model for Fusing the Information of Pythagorean Fuzzy Multicriteria Group Decision Making Based on Geometric Bonferroni Mean. Int. J. Intell. Syst. 2017, 32, 966–987. [Google Scholar] [CrossRef]
- Zhu, B.; Xu, Z.S.; Xia, M.M. Dual Hesitant Fuzzy Sets. J. Appl. Math. 2012, 2012. [Google Scholar] [CrossRef]
- Wang, H.J.; Zhao, X.F.; Wei, G.W. Dual hesitant fuzzy aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 26, 2281–2290. [Google Scholar]
- Wei, G.; Lu, M. Dual hesitant pythagorean fuzzy Hamacher aggregation operators in multiple attribute decision making. Arch. Control. Sci. 2017, 27, 365–395. [Google Scholar] [CrossRef]
- Yu, D.J. Intuitionistic fuzzy geometric Heronian mean aggregation operators. Appl. Soft Comput. 2013, 13, 1235–1246. [Google Scholar] [CrossRef]
- Fan, C.; Ye, J.; Feng, S.; Fan, E.; Hu, K. Multi-Criteria Decision-Making Method Using Heronian Mean Operators under a Bipolar Neutrosophic Environment. Mathematics 2019, 7, 97. [Google Scholar] [CrossRef]
- Zang, Y.Q.; Zhao, X.D.; Li, S.Y. Interval-Valued Dual Hesitant Fuzzy Heronian Mean Aggregation Operators and their Application to Multi-Attribute Decision Making. Int. J. Comput. Intell. Appl. 2018, 17, 1850005. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M.; Gao, H. Picture fuzzy heronian mean aggregation operators in multiple attribute decision making. Int. J. Knowl. Intell. Eng. Syst. 2018, 22, 167–175. [Google Scholar] [CrossRef]
- Wang, H.H.; Ju, Y.B.; Liu, P.D.; Ju, D.W.; Liu, Z.M. Some trapezoidal interval type-2 fuzzy Heronian mean operators and their application in multiple attribute group decision making. J. Intell. Fuzzy Syst. 2018, 35, 2323–2337. [Google Scholar] [CrossRef]
- Fan, C.; Ye, J. Heronian Mean Operator of Linguistic Neutrosophic Cubic Numbers and Their Multiple Attribute Decision-Making Methods. Math. Probl. Eng. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Liu, P.; Liu, Z.; Zhang, X. Some intuitionistic uncertain linguistic Heronian mean operators and their application to group decision making. Appl. Math. Comput. 2014, 230, 570–586. [Google Scholar] [CrossRef]
- Yu, S.-M.; Zhou, H.; Chen, X.-H.; Wang, J.-Q. A Multi-Criteria Decision-Making Method Based on Heronian Mean Operators Under a Linguistic Hesitant Fuzzy Environment. Asia-Pacific J. Oper. Res. 2015, 32, 1550035. [Google Scholar] [CrossRef]
- Li, Y.H.; Liu, P.D.; Chen, Y.B. Some Single Valued Neutrosophic Number Heronian Mean Operators and Their Application in Multiple Attribute Group Decision Making. Informatica 2016, 27, 85–110. [Google Scholar] [CrossRef]
- Wei, G.; Gao, H.; Wei, Y. Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. Int. J. Intell. Syst. 2018, 33, 1426–1458. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.T.; Wang, J.; Shang, X.P. Some q-rung orthopair linguistic Heronian mean operators with their application to multi-attribute group decision making. Arch. Control Sci. 2018, 28, 551–583. [Google Scholar]
- Beliakov, G.P.; Calvo, A.T. Aggregation Functions: A Guide for Practitioners; Springer: Heidelberg, Germany, 2007. [Google Scholar]
- Xu, Y.; Shang, X.; Wang, J.; Wu, W.; Huang, H. Some q-Rung Dual Hesitant Fuzzy Heronian Mean Operators with Their Application to Multiple Attribute Group Decision-Making. Symmetry 2018, 10, 472. [Google Scholar] [CrossRef]
- Wei, Y.; Yu, Q.; Liu, J.; Cao, Y. Hot money and China’s stock market volatility: Further evidence using the GARCH-MIDAS model. Phys. A: Stat. Mech. Appl. 2018, 492, 923–930. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, J.; Lai, X.; Hu, Y. Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty? Energy Economics 2017, 68, 141–150. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.; Gao, H.; Wei, G.W. Methods for MADM with Picture Fuzzy Muirhead Mean Operators and Their Application for Evaluating the Financial Investment Risk. Symmetry 2019, 11, 6. [Google Scholar] [CrossRef]
- Wang, J.; Wei, G.W.; Wei, Y. Models for Green Supplier Selection with Some 2-Tuple Linguistic Neutrosophic Number Bonferroni Mean Operators. Symmetry 2018, 10, 131. [Google Scholar] [CrossRef]
- Gao, H. Pythagorean fuzzy Hamacher Prioritized aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2018, 35, 2229–2245. [Google Scholar] [CrossRef]
- Deng, X.M.; Wei, G.W.; Gao, H.; Wang, J. Models for Safety Assessment of Construction Project With Some 2-Tuple Linguistic Pythagorean Fuzzy Bonferroni Mean Operators. IEEE Access 2018, 6, 52105–52137. [Google Scholar] [CrossRef]
- Deng, X.M.; Wang, J.; Wei, G.W.; Lu, M. Models for Multiple Attribute Decision Making with Some 2-Tuple Linguistic Pythagorean Fuzzy Hamy Mean Operators. Mathematics 2018, 6, 11. [Google Scholar] [CrossRef]
- Wei, G.W.; Garg, H.; Gao, H.; Wei, C. Interval-Valued Pythagorean Fuzzy Maclaurin Symmetric Mean Operators in Multiple Attribute Decision Making. IEEE Access 2018, 6, 67866–67884. [Google Scholar] [CrossRef]
- Li, Z.X.; Wei, G.W.; Gao, H. Methods for Multiple Attribute Decision Making with Interval-Valued Pythagorean Fuzzy Information. Mathematics 2018, 6, 228. [Google Scholar] [CrossRef]
Alternatives | ||||
---|---|---|---|---|
{{0.4,0.5},{0.7}} | {{0.5,0.6},{0.4,0.5)} | {{0.3,0.4},{0.8)} | {{0.5,0.6},{0.6}} | |
{{0.7},{0.5}} | {{0.3,0.5,0.6},{0.5}} | {{0.3},{0.7,0.8,0.9}} | {{0.6),{0.5,0.6)} | |
{{0.6,0.8},{0.3}} | {{0.3},{0.8,0.9}} | {{0.3,0.4,0.5},{0.7}} | {{0.6,0.7,0.8},{0.4}} | |
{{0.8},{0.4})} | {{0.7,0.8,0.9},{0.3}} | {{0.2,0.3},{0.4}} | {{0.2},{0.7,0.8,0.9}} | |
{{0.1,0.2},{0.3}} | {{0.3,0.4,0.5},{0.6}} | {{0.5,0.6},{0.3}} | {{0.3,0.4,0.5},{0.6}} |
Parameter | Ordering | |||||
---|---|---|---|---|---|---|
0.2989 | 0.3322 | 0.3126 | 0.4804 | 0.3732 | ||
0.3504 | 0.3921 | 0.3834 | 0.5540 | 0.4208 | ||
0.3998 | 0.4536 | 0.4669 | 0.6255 | 0.4674 | ||
0.4288 | 0.4887 | 0.5197 | 0.6621 | 0.4933 | ||
0.4493 | 0.5117 | 0.5559 | 0.6846 | 0.5108 | ||
0.4647 | 0.5280 | 0.5822 | 0.7001 | 0.5235 |
Parameter | Ordering | |||||
---|---|---|---|---|---|---|
0.5484 | 0.5775 | 0.5431 | 0.6850 | 0.5728 | ||
0.4901 | 0.5176 | 0.4710 | 0.6165 | 0.5256 | ||
0.4349 | 0.4549 | 0.3976 | 0.5240 | 0.4780 | ||
0.4033 | 0.4146 | 0.3563 | 0.4591 | 0.4515 | ||
0.3815 | 0.3854 | 0.3290 | 0.4139 | 0.4344 | ||
0.3653 | 0.3633 | 0.3094 | 0.3817 | 0.4223 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, M.; Wang, J.; Lu, J.; Wei, G.; Wei, C.; Wei, Y. Dual Hesitant Pythagorean Fuzzy Heronian Mean Operators in Multiple Attribute Decision Making. Mathematics 2019, 7, 344. https://doi.org/10.3390/math7040344
Tang M, Wang J, Lu J, Wei G, Wei C, Wei Y. Dual Hesitant Pythagorean Fuzzy Heronian Mean Operators in Multiple Attribute Decision Making. Mathematics. 2019; 7(4):344. https://doi.org/10.3390/math7040344
Chicago/Turabian StyleTang, Mei, Jie Wang, Jianping Lu, Guiwu Wei, Cun Wei, and Yu Wei. 2019. "Dual Hesitant Pythagorean Fuzzy Heronian Mean Operators in Multiple Attribute Decision Making" Mathematics 7, no. 4: 344. https://doi.org/10.3390/math7040344
APA StyleTang, M., Wang, J., Lu, J., Wei, G., Wei, C., & Wei, Y. (2019). Dual Hesitant Pythagorean Fuzzy Heronian Mean Operators in Multiple Attribute Decision Making. Mathematics, 7(4), 344. https://doi.org/10.3390/math7040344