A Probabilistic Proof for Representations of the Riemann Zeta Function
Abstract
:1. Introduction
2. The Main Results and Their Proofs
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Choi, J.; Cho, Y.J.; Srivastava, H.M. Series involving the zeta function and multiple Gamma functions. Appl. Math. Comput. 2004, 159, 509–537. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables, Integrals, Series, and Products; Academic: New York, NY, USA, 1980. [Google Scholar]
- Srivastava, H.M. Certain classes of series associated with the zeta and related functions. Appl. Math. Comput. 2003, 141, 13–49. [Google Scholar] [CrossRef]
- Titchmarsh, E.C.; Heath-Brown, D.R. The Theory of the Riemann Zeta-function, 2nd ed.; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- De Amo, E.; Díaz Carrillo, M.; Fernández-Sánchez, J. Another proof of Euler’s formula for ζ(2k). Proc. Am. Math. Soc. 2011, 139, 1441–1444. [Google Scholar] [CrossRef]
- Arakawa, T.; Ibukiyama, T.; Kaneko, M. Bernoulli Numbers and Zeta Functions; Springer Monographs in Mathematics; Springer: Tokyo, Japan, 2014. [Google Scholar]
- Ribeiro, P. Another proof of the famous formula for the zeta function at positive even integers. Am. Math. Mon. 2018, 125, 839–841. [Google Scholar] [CrossRef]
- Sofo, A. Zeta identities in parameter form. Results Math. 2019, 74. [Google Scholar] [CrossRef]
- Cvijović, D.; Klinowski, J. Integral representations of the Riemann zeta function for odd-integer arguments. J. Comput. Appl. Math. 2002, 142, 435–439. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.Q. Some properties of Bernoulli polynomials and their generalizations. Appl. Math. Lett. 2011, 24, 746–751. [Google Scholar] [CrossRef] [Green Version]
- Qi, F. A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers. J. Comput. Appl. Math. 2019, 351, 1–5. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Zeta and Q-Zeta Functions and Associated Series and Integrals; Elsevier Inc.: New York, NY, USA, 2012. [Google Scholar]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; Wiley: New York, NY, USA, 1995; Volume 2. [Google Scholar]
- Ghosh, M.; Choi, K.P.; Li, J. A commentary on the logistic distribution. In The Legacy of Alladi Ramakrishnan in the Mathematical Sciences; Alladi, K., Klauder, R., Rao, R., Eds.; Springer Science+Business Media: Berlin, Germany, 2010. [Google Scholar]
- Widder, D.V. The Laplace Transform, 8th ed.; Princeton University Press: Princeton, NJ, USA, 1972. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Huang, Y.; Yin, C. A Probabilistic Proof for Representations of the Riemann Zeta Function. Mathematics 2019, 7, 369. https://doi.org/10.3390/math7040369
Liu J, Huang Y, Yin C. A Probabilistic Proof for Representations of the Riemann Zeta Function. Mathematics. 2019; 7(4):369. https://doi.org/10.3390/math7040369
Chicago/Turabian StyleLiu, Jiamei, Yuxia Huang, and Chuancun Yin. 2019. "A Probabilistic Proof for Representations of the Riemann Zeta Function" Mathematics 7, no. 4: 369. https://doi.org/10.3390/math7040369
APA StyleLiu, J., Huang, Y., & Yin, C. (2019). A Probabilistic Proof for Representations of the Riemann Zeta Function. Mathematics, 7(4), 369. https://doi.org/10.3390/math7040369