Comparison of the Effectiveness of Different Methods for Constructing Exact Solutions to Nonlinear PDEs. Generalizations and New Solutions
Abstract
:Contents
- 1. Introduction. Discussed Methods
- 1.1.
- Preliminary Remarks
- 1.2.
- Direct Method for Constructing Functional Separable Solutions in Implicit Form. Splitting Principle
- 1.3.
- Method of Differential Constraints
- 1.4.
- Nonclassical Method of Symmetry Reductions by Bluman and Cole
- 1.5.
- Question: Which Method is More Effective?
- 2. Nonlinear Reaction-Diffusion Equations with Variable Coefficients
- 2.1.
- Using the Method of Differential Constraints
- 2.2.
- Using the Direct Method of Functional Separation of Variables
- 3. Nonlinear Convection-Diffusion Equations with Variable Coefficients
- 3.1.
- Using the Method of Differential Constraints
- 3.2.
- Using the Direct Method of Functional Separation of Variables
- 4. Nonlinear Klein–Gordon Type Equations with Variable Coefficients
- 4.1.
- Using the Method of Differential Constraints
- 4.2.
- Using the Direct Method of Functional Separation of Variables
- 5. Clarkson–Kruskal Direct Method. Axisymmetric Boundary Layer Equations
- 5.1.
- Note on the Clarkson–Kruskal Direct Method
- 5.2.
- Axisymmetric Boundary Layer. Functional Separable Solutions in Explicit Form
- 5.3.
- Axisymmetric Boundary Layer. Using Multiple Differential Constraints
- 6. Functional Separable Solutions of Other Nonlinear PDEs
- 6.1.
- Functional Separable Solutions of Nonlinear PDEs with Two or More Space Variables
- 6.2.
- Functional Separable Solutions of Third-Order Nonlinear PDEs
- 6.3.
- Functional Separable Solutions of the Nonlinear Schrödinger Equation of General Form
- 7. A Generalization of the Method of Functional Separation of Variables
- 7.1.
- Using Nonlocal Transformations
- 7.2.
- Possible Modifications
- 8. Brief Conclusions
- References
1. Introduction. Discussed Methods
1.1. Preliminary Remarks
1.2. Direct Method for Constructing Functional Separable Solutions in Implicit Form. Splitting Principle
1.3. Method of Differential Constraints
1.4. Nonclassical Method of Symmetry Reductions by Bluman and Cole
1.5. Question: Which Method is More Effective?
2. Nonlinear Reaction-Diffusion Equations with Variable Coefficients
2.1. Using the Method of Differential Constraints
2.2. Using Direct Method of Functional Separation of Variables
3. Nonlinear Convection-Diffusion Equations with Variable Coefficients
3.1. Using the Method of Differential Constraints
3.2. Using the Direct Method of Functional Separation of Variables
4. Nonlinear Klein–Gordon-Type Equations with Variable Coefficients
4.1. Using the Method of Differential Constraints
4.2. Using the Direct Method of Functional Separation of Variables
5. Clarkson–Kruskal Direct Method. Axisymmetric Boundary Layer Equations
5.1. Note on the Clarkson–Kruskal Direct Method
5.2. Axisymmetric Boundary Layer. Functional Separable Solutions in Explicit Form
5.3. Axisymmetric Boundary Layer. Using Multiple Differential Constraints
6. Functional Separable Solutions of Other Nonlinear PDEs
6.1. Functional Separable Solutions of Nonlinear PDEs with Two or More Space Variables
6.2. Functional Separable Solutions of Third-Order Nonlinear PDEs
6.3. Functional Separable Solutions of the Nonlinear Schrödinger Equation of General Form
7. A Generalization of the Method of Functional Separation of Variables
7.1. Using Nonlocal Transformations
7.2. Possible Modifications
8. Brief Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: Boston, MA, USA, 1982; ISBN 0124318011. [Google Scholar]
- Barenblatt, G.I. Scaling, Self-similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics; Cambridge University Press: Cambridge, UK, 1996; ISBN 0521435226. [Google Scholar]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Nonlinear Partial Differential Equations, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9781420087239. [Google Scholar]
- Griffiths, G.; Schiesser, W. Traveling Wave Analysis of Partial Differential Equations; Academic Press: Burlington, NJ, USA, 2012; ISBN 9780123846525. [Google Scholar]
- Murphy, G.M. Ordinary Differential Equations and Their Solutions; D. Van Nostrand: London, UK, 1960. [Google Scholar]
- Zwillinger, D. Handbook of Differential Equations, 3rd ed.; Academic Press: New York, NY, USA, 1997. [Google Scholar]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Exact Solutions for Ordinary Differential Equations, 2nd ed.; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2003; ISBN 1584882972. [Google Scholar]
- Kudryashov, N.A. Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons Fractals 2005, 24, 1217–1231. [Google Scholar] [CrossRef] [Green Version]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781466569379. [Google Scholar]
- Polyanin, A.D. Construction of exact solutions in implicit form for PDEs: New functional separable solutions of non-linear reaction-diffusion equations with variable coefficients. Int. J. Non-Linear Mech. 2019, 111, 95–105. [Google Scholar] [CrossRef]
- Polyanin, A.D. Construction of functional separable solutions in implicit form for non-linear Klein–Gordon type equations with variable coefficients. Int. J. Non-Linear Mech. 2019. [Google Scholar] [CrossRef]
- Birkhoff, G. Hydrodynamics; Princeton University Press: Princeton, NY, USA, 1960. [Google Scholar]
- Pucci, E.; Saccomandi, G. Evolution equations, invariant surface conditions and functional separation of variables. Phys. D 2000, 139, 28–47. [Google Scholar] [CrossRef] [Green Version]
- Yanenko, N.N. The compatibility theory and methods of integration of systems of nonlinear partial differential equations. In Proceedings of the 4th All-Union Mathematics Congress, Leningrad, Soviet, 3–12 July 1961; pp. 613–621. [Google Scholar]
- Meleshko, S.V. Differential constraints and one-parameter Lie-Bäcklund groups. Sov. Math. Dokl. 1983, 28, 37–41. [Google Scholar]
- Galaktionov, V.A. Quasilinear heat equations with first-order sign-invariants and new explicit solutions. Nonlinear Anal. Theor. Meth. Appl. 1994, 23, 1595–1621. [Google Scholar] [CrossRef]
- Olver, P.J. Direct reduction and differential constraints. Proc. R. Soc. Lond. Ser. A 1994, 444, 509–523. [Google Scholar] [CrossRef]
- Kaptsov, O.V. Determining equations and differential constraints. Nonlinear Math. Phys. 1995, 2, 283–291. [Google Scholar] [CrossRef]
- Kaptsov, O.V. Linear determining equations for differential constraints. Sb. Math. 1998, 189, 1839–1854. [Google Scholar] [CrossRef]
- Sidorov, A.F.; Shapeev, V.P.; Yanenko, N.N. Method of Differential Constraints and its Applications in Gas Dynamics; Nauka: Novosibirsk, Soviet, 1984. (In Russian) [Google Scholar]
- Andreev, V.K.; Kaptsov, O.V.; Pukhnachov, V.V.; Rodionov, A.A. Applications of Group-Theoretical Methods in Hydrodynamics; Kluwer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Kaptsov, O.V.; Verevkin, I.V. Differential constraints and exact solutions of nonlinear diffusion equations. J. Phys. A Math. Gen. 2003, 36, 1401–1414. [Google Scholar] [CrossRef] [Green Version]
- Bluman, G.W.; Cole, J.D. The general similarity solution of the heat equation. J. Math. Mech. 1969, 18, 1025–1042. [Google Scholar]
- Olver, P.J.; Rosenau, P. The construction of special solutions to partial differential equations. Phys. Lett. A 1986, 114, 107–112. [Google Scholar] [CrossRef]
- Levi, D.; Winternitz, P. Nonclassical symmetry reduction: Example of the Boussinesq equation. J. Phys. A 1989, 22, 2915–2924. [Google Scholar] [CrossRef]
- Nucci, M.C.; Clarkson, P.A. The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh–Nagumo equation. Phys. Lett. A 1992, 164, 49–56. [Google Scholar] [CrossRef]
- Pucci, E. Similarity reductions of partial differential equations. J. Phys. A Math. General 1992, 25, 2631–2640. [Google Scholar] [CrossRef]
- Clarkson, P.A. Nonclassical symmetry reductions of the Boussinesq equation. Chaos Solitons Fractals 1995, 5, 2261–2301. [Google Scholar] [CrossRef]
- Olver, P.J.; Vorob’ev, E.M. Nonclassical and conditional symmetries. In CRC Handbook of Lie Group Analysis of Differential Equations; Ibragimov, N.H., Ed.; CRC Press: Boca Raton, FL, USA, 1996; Volume 3, pp. 291–328. [Google Scholar]
- Clarkson, P.A.; Ludlow, D.K.; Priestley, T.J. The classical, direct and nonclassical methods for symmetry reductions of nonlinear partial differential equations. Methods Appl. Anal. 1997, 4, 173–195. [Google Scholar] [CrossRef]
- Saccomandi, G. A personal overview on the reduction methods for partial differential equations. Note Math. 2004, 23, 217–248. [Google Scholar]
- Bradshaw-Hajek, B.H. Nonclassical symmetry solutions for non-autonomous reaction-diffusion equations. Symmetry 2019, 11, 208. [Google Scholar] [CrossRef]
- Olver, P.L. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1986; ISBN 9781468402742. [Google Scholar]
- Ibragimov, N.H. CRC Handbook of Lie Group Analysis of Differential Equations, Volume 1: Symmetries, Exact solutions and Conservation Laws; CRC Press: Boca Raton, FL, USA, 1994; ISBN 9780849344886. [Google Scholar]
- Dorodnitsyn, V.A. On invariant solutions of the equation of non-linear heat conduction with a source. USSR Comput. Math. Math. Phys. 1982, 22, 115–122. [Google Scholar] [CrossRef]
- Kudryashov, N.A. On exact solutions of families of Fisher equations. Theor. Math. Phys. 1993, 94, 211–218. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Mansfield, E.L. Symmetry reductions and exact solutions of a class of nonlinear heat equations. Phys. D 1994, 70, 250–288. [Google Scholar] [CrossRef] [Green Version]
- Doyle, P.W.; Vassiliou, P.J. Separation of variables for the 1-dimensional non-linear diffusion equation. Int. J. Non-Linear Mech. 1998, 33, 315–326. [Google Scholar] [CrossRef]
- Hood, S. On direct, implicit reductions of a nonlinear diffusion equation with an arbitrary function-generalizations of Clarkson’s and Kruskal’s method. IMA J. Appl. Math. 2000, 64, 223–244. [Google Scholar] [CrossRef]
- Galaktionov, V.A.; Svirshchevskii, S.R. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2006; ISBN 9781584886631. [Google Scholar]
- Cherniha, R.M.; Pliukhin, O. New conditional symmetries and exact solutions of reaction-diffusion-convection equations with exponential nonlinearities. J. Math. Anal. Appl. 2013, 403, 23–37. [Google Scholar] [CrossRef]
- Cherniha, R.; Serov, M.; Pliukhin, O. Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781498776196. [Google Scholar]
- Vaneeva, O.O.; Johnpillai, A.G.; Popovych, R.O.; Sophocleous, C. Extended group analysis of variable coefficient reaction-diffusion equations with power nonlinearities. J. Math. Anal. Appl. 2007, 330, 1363–1386. [Google Scholar] [CrossRef]
- Vaneeva, O.O.; Popovych, R.O.; Sophocleous, C. Enhanced group analysis and exact solutions of variable coefficient semilinear diffusion equations with a power source. Acta Appl. Math. 2009, 106, 1–46. [Google Scholar] [CrossRef]
- Vaneeva, O.O.; Popovych, R.O.; Sophocleous, C. Extended group analysis of variable coefficient reaction-diffusion equations with exponential nonlinearities. J. Math. Anal. Appl. 2012, 396, 225–242. [Google Scholar] [CrossRef]
- Polyanin, A.D. Functional separable solutions of nonlinear reaction-diffusion equations with variable coefficients. Appl. Math. Comput. 2019, 347, 282–292. [Google Scholar] [CrossRef]
- Meleshko, S.V.; Moyo, S. On the complete group classification of the reaction-diffusion equation with a delay. J. Math. Anal. Appl. 2008, 338, 448–466. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Exact solutions of linear and non-linear differential-difference heat and diffusion equations with finite relaxation time. Int. J. Non-Linear Mech. 2013, 54, 115–126. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Exact separable solutions of delay reaction-diffusion equations and other nonlinear partial functional-differential equations. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 409–416. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 417–430. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. New generalized and functional separable solutions to non-linear delay reaction-diffusion equations. Int. J. Non-Linear Mech. 2014, 59, 16–22. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Nonlinear delay reaction-diffusion equations with varying transfer coefficients: Exact methods and new solutions. Appl. Math. Lett. 2014, 37, 43–48. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. The functional constraints method: Application to non-linear delay reaction-diffusion equations with varying transfer coefficients. Int. J. Non-Linear Mech. 2014, 67, 267–277. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G. Nonlinear delay reaction-diffusion equations: Traveling-wave solutions in elementary functions. Appl. Math. Lett. 2015, 46, 38–43. [Google Scholar] [CrossRef]
- Polyanin, A.D. Generalized traveling-wave solutions of nonlinear reaction-diffusion equations with delay and variable coefficients. Appl. Math. Lett. 2019, 90, 49–53. [Google Scholar] [CrossRef]
- Pucci, E.; Saccomandi, G. On the weak symmetry groups of partial differential equations. J. Math. Anal. Appl. 1992, 163, 588–598. [Google Scholar] [CrossRef]
- Gandarias, M.L.; Romero, J.L.; Díaz, J.M. Nonclassical symmetry reductions of a porous medium equation with convection. J. Phys. A Math. Gen. 1999, 32, 1461–1473. [Google Scholar] [CrossRef]
- Popovych, R.O.; Ivanova, N.M. New results on group classification of nonlinear diffusion-convection equations. J. Phys. A Math. Gen. 2004, 37, 7547–7565. [Google Scholar] [CrossRef]
- Ivanova, N.M.; Sophocleous, C. On the group classification of variable-coefficient nonlinear diffusion-convection equations. J. Comput. Appl. Math. 2006, 197, 322–344. [Google Scholar] [CrossRef]
- Ivanova, N.M. Exact solutions of diffusion-convection equations. Dyn. PDE 2008, 5, 139–171. [Google Scholar] [CrossRef] [Green Version]
- Vaneeva, O.O.; Popovych, R.O.; Sophocleous, C. Group analysis of variable coefficient diffusion-convection equations, I. Enhanced group classification. Lobachevskii J. Math. 2010, 73, 100–122. [Google Scholar]
- Polyanin, A.D. Functional separable solutions of nonlinear convection-diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 2019, 73, 379–390. [Google Scholar] [CrossRef]
- Bulbul, B.; Sezer, M.; Greiner, W. Relativistic Quantum Mechanics—Wave Equations, 3rd ed.; Springer: Berlin, Germany, 2000; ISBN 9783540995357. [Google Scholar]
- Cuevas-Maraver, J.; Kevrekidis, P.G.; Williams, F. (Eds.) The Sine-Gordon Model and its Applications; Springer: Heidelberg, Germany, 2014; ISBN 9783319067216. [Google Scholar]
- Wazwaz, A.-M. The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein–Gordon equation. Appl. Math. Comput. 2005, 167, 1179–1195. [Google Scholar] [CrossRef]
- Abazari, R.; Jamshidzadeh, S. Exact solitary wave solutions of the complex Klein–Gordon equation. Optik 2015, 126, 1970–1975. [Google Scholar] [CrossRef]
- Grundland, A.M.; Infeld, E. A family of non-linear Klein–Gordon equations and their solutions. J. Math. Phys. 1992, 33, 2498–2503. [Google Scholar] [CrossRef]
- Zhdanov, R.Z. Separation of variables in the non-linear wave equation. J. Phys. A 1994, 27, L291–L297. [Google Scholar] [CrossRef]
- Estévez, P.G.; Qu, C.Z. Separation of variables in nonlinear wave equations with variable wave speed. Theor. Math. Phys. 2002, 133, 1490–1497. [Google Scholar] [CrossRef]
- Hu, J.; Qu, C. Functionally separable solutions to nonlinear wave equations by group foliation method. J. Math. Anal. Appl. 2007, 330, 298–311. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.J.; Zhou, S. Group properties of generalized quasi-linear wave equations. J. Math. Anal. Appl. 2010, 366, 460–472. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.J.; Zhu, Y.; Yang, Q. Reduction operators and exact solutions of variable coefficient nonlinear wave equations with power nonlinearities. Symmetry 2017, 9, 3. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Generalized and functional separable solutions to nonlinear delay Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 2676–2689. [Google Scholar] [CrossRef]
- Long, F.-S.; Meleshko, S.V. On the complete group classification of the one-dimensional nonlinear Klein–Gordon equation with a delay. Math. Meth. Appl. Sci. 2016, 39, 3255–3270. [Google Scholar] [CrossRef]
- Long, F.-S.; Meleshko, S.V. Symmetry analysis of the nonlinear two-dimensional Klein–Gordon equation with a time-varying delay. Math. Meth. Appl. Sci. 2017, 40, 4658–4673. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Kruskal, M.D. New similarity reductions of the Boussinesq equation. J. Math. Phys. 1989, 30, 2201–2213. [Google Scholar] [CrossRef]
- Ludlow, D.K.; Clarkson, P.A.; Bassom, A.P. Similarity reductions and exact solutions for the two-dimensional incompressible Navier–Stokes equations. Stud. Appl. Math. 1999, 103, 183–240. [Google Scholar] [CrossRef]
- Ludlow, D.K.; Clarkson, P.A.; Bassom, A.P. New similarity solutions of the unsteady incompressible boundary-layer equations. Quart. J. Mech. Appl. Math. 2000, 53, 175–206. [Google Scholar] [CrossRef] [Green Version]
- Schlichting, H. Boundary Layer Theory; McGraw-Hill: New York, NY, USA, 1981. [Google Scholar]
- Polyanin, A.D.; Zhurov, A.I. Unsteady axisymmetric boundary-layer equations: Transformations, properties, exact solutions, order reduction and solution method. Int. J. Non-Linear Mech. 2015, 74, 40–50. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Direct functional separation of variables and new exact solutions to axisymmetric unsteady boundary-layer equations. Commun. Nonlinear Sci. Numer. Simul. 2016, 31, 11–20. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. One-dimensional reductions and functional separable solutions to unsteady plane and axisymmetric boundary-layer equations for non-Newtonian fluids. Int. J. Non-Linear Mech. 2016, 85, 70–80. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Nazaikinskii, V.E. Handbook of Linear Partial Differential Equations for Engineers and Scientists, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9781466581494. [Google Scholar]
- Fushchich, W.I.; Serov, N.I.; Ahmerov, T.K. On the conditional symmetry of the generalized Korteweg-de Vries equation. Proc. Ukr. Acad. Sci. 1991, A12, 28–30. [Google Scholar]
- Sulem, C.; Sulem, P.-L. The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse; Springer: New York, NY, USA, 1999; ISBN 9780387986111. [Google Scholar]
- Fibich, G. The Nonlinear Schrödinger Equation; Springer: Basel, Switzerland, 2015; ISBN 9783319127477. [Google Scholar]
- Kevrekidis, P.G.; Frantzeskakis, D.J.; Carretero-Gonzalez, R. The Defocusing Nonlinear Schrodinger Equation: From Dark Solitons to Vortices and Vortex Rings; SIAM: Philadelphia, PA, USA, 2015; ISBN 9781611973938. [Google Scholar]
- Liu, W.-M.; Kengne, E. Schrödinger Equations in Nonlinear Systems; Springer: Singapore, 2019; ISBN 9789811365805. [Google Scholar]
- Eslami, M.; Mirzazadeh, M. Optical solitons with Biswas-Milovic equation for power law and dual-power law nonlinearities. Nonlinear Dyn. 2016, 83, 731–738. [Google Scholar] [CrossRef]
- Biswas, A.; Ekici, M.; Sonmezoglu, A.; Belic, M. Optical solitons in birefringent fibers with quadratic-cubic nonlinearity by extended trial function scheme. Optik 2019, 176, 542–548. [Google Scholar] [CrossRef]
- Biswas, A.; Ekici, M.; Sonmezoglu, A.; Belic, M. Optical solitons in birefringent fibers with quadratic-cubic nonlinearity by extended G′/G-expansion scheme. Optik 2019, 178, 59–65. [Google Scholar] [CrossRef]
No. | Generating Functions u | Linear Constraints between |
---|---|---|
1 | , , | |
2 | , , | |
3 | , | |
4 | , , | |
5 | , | |
6 | , | |
7 | , | |
8 | , | |
9 | , | |
10 | , | |
11 | , | |
12 | , | |
13 | , | |
14 | , |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyanin, A.D. Comparison of the Effectiveness of Different Methods for Constructing Exact Solutions to Nonlinear PDEs. Generalizations and New Solutions. Mathematics 2019, 7, 386. https://doi.org/10.3390/math7050386
Polyanin AD. Comparison of the Effectiveness of Different Methods for Constructing Exact Solutions to Nonlinear PDEs. Generalizations and New Solutions. Mathematics. 2019; 7(5):386. https://doi.org/10.3390/math7050386
Chicago/Turabian StylePolyanin, Andrei D. 2019. "Comparison of the Effectiveness of Different Methods for Constructing Exact Solutions to Nonlinear PDEs. Generalizations and New Solutions" Mathematics 7, no. 5: 386. https://doi.org/10.3390/math7050386
APA StylePolyanin, A. D. (2019). Comparison of the Effectiveness of Different Methods for Constructing Exact Solutions to Nonlinear PDEs. Generalizations and New Solutions. Mathematics, 7(5), 386. https://doi.org/10.3390/math7050386