Models for MADM with Single-Valued Neutrosophic 2-Tuple Linguistic Muirhead Mean Operators
Abstract
:1. Introduction
2. Preliminaries
2.1. Single-Valued Neutrosophic 2-Tuple Linguistic Sets
- (1)
- (2)
- (3)
- (4)
2.2. MM Operators
3. Some Muirhead Mean Operators with SVN2TLNs
3.1. The Single-Valued Neutrosophic 2-Tuple Linguistic Muirhead Mean (SVN2TLMM) Operator
3.2. The Single-Valued Neutrosophic 2-Tuple Linguistic Weighted Muirhead Mean (SVN2TLWMM) Operator
3.3. The Single-Valued Neutrosophic 2-Tuple Linguistic Dual Muirhead Mean (SVN2TLDMM) Operator
3.4. The Single-Valued Neutrosophic 2-Tuple Linguistic Weighted Dual Muirhead Mean (SVN2TLWDMM) Operator
4. Numerical Example and Comparative Analysis
4.1. Numerical Example
4.2. Influence of the Parameter on the Final Result
4.3. Comparative Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smarandache, F. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth, DE, USA, 1999. [Google Scholar]
- Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics, 3rd ed.; American Research Press: Rehoboth, DE, USA, 2003. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.; Gargov, G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349. [Google Scholar] [CrossRef]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single-valued neutrosophic sets. Multispace Multistruct. 2010, 4, 410–413. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing; Hexis: Phoenix, AZ, USA, 2005. [Google Scholar]
- Ye, J. Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int. J. Syst. 2013, 42, 386–394. [Google Scholar] [CrossRef]
- Broumi, S.; Smarandache, F. Correlation Coefficient of Interval Neutrosophic Set. Appl. Mech. Mater. 2013, 436, 511–517. [Google Scholar] [CrossRef]
- Biswas, P.; Pramanik, S.; Giri, B.C. TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput. Appl. 2016, 27, 727–737. [Google Scholar] [CrossRef]
- Liu, P.D.; Chu, Y.C.; Li, Y.W.; Chen, Y.B. Some generalized neutrosophic number Hamacher aggregation operators and their application to Group Decision Making. Int. J. Fuzzy Syst. 2014, 16, 242–255. [Google Scholar]
- Ahin, R.S.; Liu, P.D. Maximizing deviation method for neutrosophic multiple attribute decision making with incomplete weight information. Neural Comput. Appl. 2016, 27, 2017–2029. [Google Scholar]
- Ye, J. Similarity measures between interval neutrosophic sets and their applications in multicriteria decision-making. J. Intell. Fuzzy Syst. 2014, 26, 165–172. [Google Scholar]
- Zhang, H.Y.; Wang, J.Q.; Chen, X.H. Interval neutrosophic sets and their application in multicriteria decision making problems. Sci. Word J. 2014, 2014, 1–15. [Google Scholar] [CrossRef]
- Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar]
- Peng, J.J.; Wang, J.Q.; Wang, J.; Zhang, H.Y.; Chen, X.H. Simplified neutrosophic sets and their applications in multicriteria group decision-making problems. Int. J. Syst. Sci. 2016, 47, 2342–2358. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q.; Zhang, H.Y.; Chen, X.H. An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Appl. Soft Comput. 2014, 25, 336–346. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.Q.; Chen, X.H. An outranking approach for multi-criteria decision-making problems with interval-valued neutrosophic sets. Neural Comput. Appl. 2016, 27, 615–627. [Google Scholar] [CrossRef]
- Liu, P.D.; Xi, L. The neutrosophic number generalized weighted power averaging operator and its application in multiple attribute group decision making. Int. J. Mach. Learn. Cybernet. 2018, 9, 347–358. [Google Scholar] [CrossRef]
- Deli, I.; Subas, Y. A ranking method of single-valued neutrosophic numbers and its applications to multiattribute decision making problem. Int. J. Mach. Learn. Cybern. 2017, 8, 1309–1322. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q.; Wu, X.H.; Wang, J.; Chen, X.H. Multi-valued neutrosophic sets and power aggregation operators with their applications in multi-criteria group decision-making problems. Int. J. Comput. Intell. Syst. 2015, 8, 345–363. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Ji, P.; Wang, J.Q.; Chen, X.H. An improved weighted correlation coefficient based on integrated weight for interval neutrosophic sets and its application in multi-criteria decision-making problem. Int. J. Comput. Intell. Syst. 2015, 8, 1027–1043. [Google Scholar] [CrossRef]
- Chen, J.Q.; Ye, J. Some Single-Valued Neutrosophic Dombi Weighted Aggregation Operators for Multiple Attribute Decision-Making. Symmetry 2017, 96, 82. [Google Scholar] [CrossRef]
- Liu, P.D.; Wang, Y.M. Multiple attribute decision making method based on single-valued neutrosophic normalized weighted Bonferroni mean. Neural Comput. Appl. 2014, 25, 2001–2010. [Google Scholar] [CrossRef]
- Wu, X.H.; Wang, J.Q.; Peng, J.J.; Chen, X.H. Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. J. Intell. Fuzzy Syst. 2016, 18, 1104–1116. [Google Scholar] [CrossRef]
- Li, Y.; Liu, P.; Chen, Y. Some Single-Valued Neutrosophic Number Heronian Mean Operators and Their Application in Multiple Attribute Group Decision Making. Informatica 2016, 27, 85–110. [Google Scholar] [CrossRef]
- Xu, D.S.; Wei, C.; Wei, G.W. TODIM method for single-valued Neutrosophic multiple attribute decision making. Information 2017, 8, 125. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, L.G.; Chen, H.Y.; Guan, X.J. Some new Hamacher aggregation operators under single-valued neutrosophic 2-tuple linguisticenvironment and their applications to multi-attribute group decision making. Comput. Ind. Eng. 2018, 116, 144–162. [Google Scholar] [CrossRef]
- Herrera, F.; Martinez, L. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 2000, 8, 746–752. [Google Scholar]
- Herrera, F.; Martinez, L. An approach for combining linguistic and numerical information based on the 2-tuple fuzzy linguistic representation model in decision-making. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2000, 8, 539–562. [Google Scholar] [CrossRef]
- Ye, J. Some aggregation operators of interval neutrosophic linguistic numbers for multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 27, 2231–2241. [Google Scholar]
- Ye, J. An extended TOPSIS method for multiple attribute group decision making based on single-valued neutrosophic linguistic numbers. J. Intell. Fuzzy Syst. 2015, 28, 247–255. [Google Scholar]
- Muirhead, R.F. Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters. Proc. Edinb. Math. Soc. 1902, 21, 144–162. [Google Scholar] [CrossRef]
- Tang, X.Y.; Wei, G.W.; Gao, H. Models for Multiple Attribute Decision Making with Interval-Valued Pythagorean Fuzzy Muirhead Mean Operators and Their Application to Green Suppliers Selection. Informatica 2019, 30, 153–186. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.; Gao, H.; Wei, G. Methods for MADM with Picture Fuzzy Muirhead Mean Operators and Their Application for Evaluating the Financial Investment Risk. Symmetry 2019, 11, 6. [Google Scholar] [CrossRef]
- Qin, J.Q.; Liu, X.W. 2-tuple linguistic Muirhead mean operators for multiple attribute group decision making and its application to supplier selection. Kybernetes 2017, 45, 2–29. [Google Scholar] [CrossRef]
- Wang, J.; Wei, G.W.; Wei, Y. Models for Green Supplier Selection with Some 2-Tuple Linguistic Neutrosophic Number Bonferroni Mean Operators. Symmetry 2018, 10, 131. [Google Scholar] [CrossRef]
- Gao, H. Pythagorean Fuzzy Hamacher Prioritized Aggregation Operators in Multiple Attribute Decision Making. J. Intell. Fuzzy Syst. 2018, 35, 2229–2245. [Google Scholar] [CrossRef]
- Li, Z.; Gao, H.; Wei, G. Methods for Multiple Attribute Group Decision Making Based on Intuitionistic Fuzzy Dombi Hamy Mean Operators. Symmetry 2018, 10, 574. [Google Scholar] [CrossRef]
- Li, Z.X.; Wei, G.W.; Gao, H. Methods for Multiple Attribute Decision Making with Interval-Valued Pythagorean Fuzzy Information. Mathematics 2018, 6, 228. [Google Scholar] [CrossRef]
- Kuo, M.S.; Liang, G.S. A soft computing method of performance evaluation with MCDM based on interval-valued fuzzy numbers. Appl. Soft Comput. 2012, 12, 476–485. [Google Scholar] [CrossRef]
- Wu, L.; Wei, G.; Gao, H.; Wei, Y. Some Interval-Valued Intuitionistic Fuzzy Dombi Hamy Mean Operators and Their Application for Evaluating the Elderly Tourism Service Quality in Tourism Destination. Mathematics 2018, 6, 294. [Google Scholar] [CrossRef]
- Li, Z.X.; Wei, G.W.; Lu, M. Pythagorean Fuzzy Hamy Mean Operators in Multiple Attribute Group Decision Making and Their Application to Supplier Selection. Symmetry-Basel 2018, 10, 205. [Google Scholar] [CrossRef]
- Wei, Y.; Qin, S.; Li, X.; Zhu, S.; Wei, G. Oil price fluctuation, stock market and macroeconomic fundamentals: Evidence from China before and after the financial crisis. Financ. Res. Lett. 2019, 30, 23–29. [Google Scholar]
- Wei, Y.; Yu, Q.; Liu, J.; Cao, Y. Hot money and China’s stock market volatility: Further evidence using the GARCH-MIDAS model. Phys. A Stat. Mech. Its Appl. 2018, 492, 923–930. [Google Scholar] [CrossRef]
G1 | G2 | G3 | G4 | |
---|---|---|---|---|
A1 | <(s6,0),(0.7,0.4,0.6)> | <(s4,0),(0.4,0.5,0.6)> | <(s3,0),(0.4,0.5,0.6)> | <(s4,0),(0.6,0.5,0.3)> |
A2 | <(s3,0),(0.5,0.4,0.2)> | <(s5,0),(0.6,0.5,0.4)> | <(s2,0),(0.6,0.4,0.2)> | <(s3,0),(0.8,0.3,0.5)> |
A3 | <(s2,0),(0.5,0.6,0.2)> | <(s3,0),(0.7,0.5,0.6)> | <(s4,0),(0.5,0.6,0.3)> | <(s5,0),(0.4,0.5,0.2)> |
A4 | <(s5,0),(0.8,0.4,0.6)> | <(s4,0),(0.7,0.4,0.3)> | <(s6,0),(0.6,0.5,0.3)> | <(s4,0),(0.6,0.4,0.6)> |
A5 | <(s1,0),(0.5,0.6,0.4)> | <(s5,0),(0.7,0.4,0.7)> | <(s1,0),(0.6,0.5,0.2)> | <(s3,0),(0.8,0.6,0.8)> |
SVN2TLWMM | SVN2TLWDMM | |
---|---|---|
A1 | <(s4, −0.4633),(0.4692,0.5201,0.5716)> | <(s5, −0.2958),(0.5785,0.4324,0.4843)> |
A2 | <(s3, −0.3366),(0.5757,0.4534,0.3992)> | <(s3, −0.0273),(0.6525,0.3702,0.2761)> |
A3 | <(s3, −0.1294),(0.4853,0.5894,0.3953)> | <(s4, −0.2162),(0.5754,0.4996,0.2846)> |
A4 | <(s4, −0.0021),(0.6189,0.4719,0.5075)> | <(s7, −0.0573),(0.7143,0.3868,0.3947)> |
A5 | <(s2, −0.1995),(0.6013,0.5649,0.6052)> | <(s2, −0.2488),(0.6804,0.4747,0.4541)> |
SVN2TLWMM | SVN2TLWDMM | |
---|---|---|
A1 | (s2, −0.3762) | (s3, −0.3943) |
A2 | (s2, −0.4702) | (s2, −0.0122) |
A3 | (s1, 0.4358) | (s2, 0.2592) |
A4 | (s2, 0.1847) | (s4, 0.4730) |
A5 | (s1, −0.1410) | (s1, 0.0225) |
Ordering | |
---|---|
SVN2TLWMM | A4 > A1 > A2 > A3 > A5 |
SVN2TLWDMM | A4 > A1 > A3 > A2 > A5 |
P | s(A1) | s(A2) | s(A3) | s(A4) | s(A5) | Ordering |
---|---|---|---|---|---|---|
(1,0,0,0) | (s1, 0.3096) | (s1, 0.2931) | (s1, 0.2036) | (s2, −0.1905) | (s1, −0.1063) | A4 > A1 > A2 > A3 > A5 |
(1,1,0,0) | (s2, −0.4419) | (s2, −0.4987) | (s1, 0.4121) | (s2, 0.1192) | (s1, −0.0706) | A4 > A1 > A2 > A3 > A5 |
(1,1,1,0) | (s2, −0.3762) | (s2, −0.4702) | (s1, 0.4358) | (s2, 0.1847) | (s1, −0.1410) | A4 > A1 > A2 > A3 > A5 |
(1,1,1,1) | (s2, −0.3628) | (s2, −0.4811) | (s1, 0.4095) | (s2, 0.1700) | (s1, −0.2159) | A4 > A1 > A2 > A3 > A5 |
(2,2,2,2) | (s2, −0.3628) | (s2, −0.4811) | (s1, 0.4095) | (s2, 0.1700) | (s1, −0.2159) | A4 > A1 > A2 > A3 > A5 |
(2,0,0,0) | (s2, −0.2505) | (s2, −0.2515) | (s2, −0.3744) | (s2, 0.3621) | (s1, 0.3912) | A4 > A1 > A2 > A3 > A5 |
(3,0,0,0) | (s2, −0.0101) | (s2, 0.0035) | (s2, −0.1482) | (s3, −0.3787) | (s2, −0.2759) | A4 > A1 > A2 > A3 > A5 |
P | s(A1) | s(A2) | s(A3) | s(A4) | s(A5) | Ordering |
---|---|---|---|---|---|---|
(1,0,0,0) | (s2, 0.2756) | (s2, 0.0001) | (s2, −0.0497) | (s4, −0.4654) | (s1, 0.0155) | A4 > A1 > A2 > A3 > A5 |
(1,1,0,0) | (s2, 0.3874) | (s2, −0.0806) | (s2, 0.0341) | (s4, −0.0287) | (s1, −0.0515) | A4 > A1 > A3 > A2 > A5 |
(1,1,1,0) | (s3, −0.3943) | (s2, −0.0122) | (s2, 0.2592) | (s4, 0.4730) | (s1, 0.0225) | A4 > A1 > A3 > A2 > A5 |
(1,1,1,1) | (s3, −0.2159) | (s1, 0.2825) | (s1, 0.2287) | (s2, −0.4771) | (s1, −0.0165) | A1 > A4 > A2 > A3 > A5 |
(2,2,2,2) | (s3, −0.2159) | (s1, 0.2825) | (s1, 0.2287) | (s2, −0.4771) | (s1, −0.0165) | A1 > A4 > A2 > A3 > A5 |
(2,0,0,0) | (s2, 0.2100) | (s2, −0.0916) | (s2, −0.1583) | (s3, 0.2577) | (s1, −0.1059) | A4 > A1 > A2 > A3 > A5 |
(3,0,0,0,) | (s2, 0.3086) | (s2, 0.1445) | (s2, 0.0336) | (s3, 0.4540) | (s1, 0.0299) | A4 > A1 > A2 > A3 > A5 |
Ordering | |
---|---|
TOPSIS with SVNLNs | A4 > A1 > A2 > A3 > A5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Lu, J.; Wei, G.; Lin, R.; Wei, C. Models for MADM with Single-Valued Neutrosophic 2-Tuple Linguistic Muirhead Mean Operators. Mathematics 2019, 7, 442. https://doi.org/10.3390/math7050442
Wang J, Lu J, Wei G, Lin R, Wei C. Models for MADM with Single-Valued Neutrosophic 2-Tuple Linguistic Muirhead Mean Operators. Mathematics. 2019; 7(5):442. https://doi.org/10.3390/math7050442
Chicago/Turabian StyleWang, Jie, Jianping Lu, Guiwu Wei, Rui Lin, and Cun Wei. 2019. "Models for MADM with Single-Valued Neutrosophic 2-Tuple Linguistic Muirhead Mean Operators" Mathematics 7, no. 5: 442. https://doi.org/10.3390/math7050442
APA StyleWang, J., Lu, J., Wei, G., Lin, R., & Wei, C. (2019). Models for MADM with Single-Valued Neutrosophic 2-Tuple Linguistic Muirhead Mean Operators. Mathematics, 7(5), 442. https://doi.org/10.3390/math7050442