Some Incomplete Hypergeometric Functions and Incomplete Riemann-Liouville Fractional Integral Operators
Abstract
:1. Introduction and Preliminaries
2. The Incomplete Pochhammer Ratio
3. The New Incomplete Gauss and Confluent Hypergeometric Functions
4. The Incomplete Appell’s Functions
5. Incomplete Riemann-Liouville Fractional Integral Operators
6. Generating Functions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chaudhry, M.A.; Qadir, A.; Rafique, M.; Zubair, S.M. Extension of Euler’s beta function. J. Comput. Appl. Math. 1997, 78, 19–32. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Qadir, A.; Srivastava, H.M.; Paris, R.B. Extended hypergeometric and confluent hypergeometric functions. Appl. Math. Comput. 2014, 159, 589–602. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Zubair, S.M. On a Class of Incomplete Gamma Functions with Aplications; Chapman and Hall: Dhahran, Saudi Arabia, 2001. [Google Scholar]
- Cho, N.E.; Srivastava, R. Some extended Pochhammer symbols and their applications involving generalized hypergeometric polynomials. Appl. Math. Comput. 2014, 234, 277–285. [Google Scholar]
- Lin, S.; Srivastava, H.M.; Wong, M. Some Applications of Srivastava’s Theorem Involving a Certain Family of Generalized and Extended Hypergeometric Polyomials. Filomat 2015, 29, 1811–1819. [Google Scholar] [CrossRef]
- Özarslan, M.A.; Özergin, E. Some generating relations for extended hypergeometric functions via generalized fractional derivative operator. Math. Comput. Model. 2010, 52, 1825–1833. [Google Scholar] [CrossRef]
- Özergin, E.; Özarslan, M.A.; Altin, A. Extension of gamma, beta and hypergeometric functions. J. Comput. Appl. Math. 2011, 235, 4601–4610. [Google Scholar] [Green Version]
- Özergin, E. Some Properties of Hypergeometric Functions. Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, Turkey, 2011. [Google Scholar]
- Srivastava, R. Some classes of generating functions associated with a certain family of extended and generalized hypergeometric functions. Appl. Math. Comput. 2014, 243, 132–137. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Chaudry, M.A.; Agarwal, R.P. The incomplete Pochhammer symbols and their applications to hypergeometric and related functions. Integral Transforms Spec. Funct. 2012, 23, 659–683. [Google Scholar] [CrossRef]
- Choi, J.; Parmar, R.K.; Chopra, P. The Incomplete Srivastava’s Triple Hypergeometric Functions gamma(H)(B) and Gamma(H)(B). Filomat 2016, 7, 1779–1787. [Google Scholar] [CrossRef]
- Özarslan, M.A.; Ustaoglu, C. Incomplete Caputo fractional derivative operators. Adv. Differ. Equ. 2018, 2018, 209. [Google Scholar] [CrossRef] [Green Version]
- Çetinkaya, A. The incomplete second Appell hypergeometric functions. Appl. Math. Comput. 2013, 219, 8332–8337. [Google Scholar] [CrossRef]
- Sahai, V.; Verma, A. On an extension of the generalized Pochhammer symbol and its applications to hypergeometric functions. Asian-Eur. J. Math. 2016, 9, 1650064. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saxena, R.K.; Parmar, R.K. Some Families of the Incomplete H-Functions and the Incomplete H-Functions and Associated Integral Transforms and Operators of Fractional Calculus with Applications. Russ. J. Math. Phys. 2018, 25, 116–138. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Agarwal, R.; Jain, S. Integral transform and fractional derivative formulas involving the extended generalized hypergeometric functions and probability distributions. Math. Methods Appl. Sci. 2017, 40, 255–273. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Çetinkaya, A.; Kiymaz, O.I. A certain generalized Pochhammer symbol and its applications to hypergeometric functions. Appl. Math. Comput. 2014, 226, 484–491. [Google Scholar] [CrossRef]
- Srivastava, R.; Cho, N.E. Generating functions for a certain class of incomplete hypergeometric polynomials. Appl. Math. Comput. 2012, 219, 3219–3225. [Google Scholar] [CrossRef]
- Srivastava, R. Some properties of a family of incomplete hypergeometric functions. Russ. J. Math. Phys. 2013, 20, 121–128. [Google Scholar] [CrossRef]
- Srivastava, R. Some generalizations of Pochhammer’s symboland their associated families of hypergeometric functions and hypergeometric polynomials. Appl. Math. Inf. Sci. 2013, 7, 2195–2206. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differantial Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Rossikhin, Y.A.; Shitikova, M.V. Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Appl. Mech. Rev. 2010, 63, 010801. [Google Scholar] [CrossRef]
- Sabatier, J.; Agrawal, O.P.; Tenreiro Machado, J.A. Advances in fractional calculus. In Theoretical Developments and Applications in Physics and Engineering; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Spanos, P.D.; Matteo, A.D.; Cheng, Y.; Pirrotta, A.; Li, J. Galerkin Scheme-Based Determination of Survival Probability of Oscillators with Fractional Derivative Element. J. Appl. Mech. 2016, 83, 121003. [Google Scholar] [CrossRef]
- Yang, X.; Baleanu, D.; Srivastava, H.M. Local Fractional Integral Transforms and Their Applications; Elsevier/Academic Press: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Lin, S.; Srivastava, H.M.; Yao, J.C. Some classes of of generating relations associated with a family of the generalized Gauss type hypergeometric functions. Appl. Math. Inform. Sci. 2015, 9, 1731–1738. [Google Scholar]
- Srivastava, H.M.; Parmar, R.K.; Chopra, P. A Class of Extended Fractional Derivative Operators and Associated Generating Relations Involving Hypergeometric Functions. Axioms 2012, 1, 238–258. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Ellis Horwood: New York, NY, USA, 1984. [Google Scholar]
- Fernandez, A.; Ustaoğlu, C.; Özarslan, M.A. Analytical Development of Incomplete Riemann–Liouville Fractional Calculus. Unpublished work.
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özarslan, M.A.; Ustaoğlu, C. Some Incomplete Hypergeometric Functions and Incomplete Riemann-Liouville Fractional Integral Operators. Mathematics 2019, 7, 483. https://doi.org/10.3390/math7050483
Özarslan MA, Ustaoğlu C. Some Incomplete Hypergeometric Functions and Incomplete Riemann-Liouville Fractional Integral Operators. Mathematics. 2019; 7(5):483. https://doi.org/10.3390/math7050483
Chicago/Turabian StyleÖzarslan, Mehmet Ali, and Ceren Ustaoğlu. 2019. "Some Incomplete Hypergeometric Functions and Incomplete Riemann-Liouville Fractional Integral Operators" Mathematics 7, no. 5: 483. https://doi.org/10.3390/math7050483
APA StyleÖzarslan, M. A., & Ustaoğlu, C. (2019). Some Incomplete Hypergeometric Functions and Incomplete Riemann-Liouville Fractional Integral Operators. Mathematics, 7(5), 483. https://doi.org/10.3390/math7050483