The Langevin Equation in Terms of Generalized Liouville–Caputo Derivatives with Nonlocal Boundary Conditions Involving a Generalized Fractional Integral
Abstract
:1. Introduction
2. Preliminaries
3. Existence and Uniqueness Results
- (A1)
- There exists a continuous function such that:
- (A2)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zaslavsky, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Liouville-Caputo Type. Lecture Notes in Mathematics 2004; Springer: Berlin, Germany, 2010. [Google Scholar]
- Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar] [CrossRef]
- Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics. Theory and Application; Elsevier/Academic Press: London, UK, 2017. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- West, B.J.; Picozzi, S. Fractional Langevin model of memory in financial time series. Phys. Rev. E 2002, 65, 037106. [Google Scholar] [CrossRef] [PubMed]
- Vinales, A.D.; Desposito, M.A. Anomalous diffusion: Exact solution of the generalized Langevin equation for harmonically bounded particle. Phys. Rev. E 2006, 73, 016111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohenberg, P.C.; Halperin, B.I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 1977, 49, 435–479. [Google Scholar] [CrossRef]
- Metiu, H.; Schon, G. Description of Quantum noise by a Langevin equation. Phys. Rev. Lett. 1984, 53, 13. [Google Scholar] [CrossRef]
- Datsko, B.; Gafiychuk, V. Complex nonlinear dynamics in subdiffusive activator–inhibitor systems. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1673–1680. [Google Scholar] [CrossRef]
- Datsko, B.; Gafiychuk, V. Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point. Fract. Calc. Appl. Anal. 2018, 21, 237–253. [Google Scholar] [CrossRef] [Green Version]
- Fa, K.S. Fractional Langevin equation and Riemann–Liouville fractional derivative. Eur. Phys. J. E 2007, 24, 139–143. [Google Scholar]
- Ahmad, B.; Nieto, J.J.; Alsaedi, A.; El-Shahed, M. A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal. Real World Appl. 2012, 13, 599–606. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Song, G. Boundary value problem of a nonlinear Langevin equation with two different fractional orders and impulses. Fixed Point Theory Appl. 2012, 2012, 200. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K. New existence results for differential inclusions involving Langevin equation with two indices. J. Nonlinear Convex Anal. 2013, 14, 437–450. [Google Scholar]
- Muensawat, T.; Ntouyas, S.K.; Tariboon, J. Systems of generalized Sturm-Liouville and Langevin fractional differential equations. Adv. Differ. Equ. 2017, 2017, 63. [Google Scholar] [CrossRef] [Green Version]
- Fazli, H.; Nieto, J.J. Fractional Langevin equation with anti-periodic boundary conditions. Chaos Solitons Fractals 2018, 114, 332–337. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Salem, S. On a nonlocal integral boundary value problem of nonlinear Langevin equation with different fractional orders. Adv. Differ. Equ. 2019, 2019, 57. [Google Scholar] [CrossRef] [Green Version]
- Laskin, N. Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 2000, 268, 298–305. [Google Scholar] [CrossRef]
- Katugampola, U.N. New Approach to a generalized fractional integral. Appl. Math. Comput. 2015, 218, 860–865. [Google Scholar] [CrossRef]
- Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. On the generalized fractional derivatives and their Caputo modification. J. Nonlinear Sci. Appl. 2017, 10, 2607–2619. [Google Scholar] [CrossRef] [Green Version]
- Krasnoselskii, M.A. Two remarks on the method of successive approximations. Uspekhi Matematicheskikh Nauk 1955, 10, 123–127. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, B.; Alghanmi, M.; Alsaedi, A.; Srivastava, H.M.; Ntouyas, S.K. The Langevin Equation in Terms of Generalized Liouville–Caputo Derivatives with Nonlocal Boundary Conditions Involving a Generalized Fractional Integral. Mathematics 2019, 7, 533. https://doi.org/10.3390/math7060533
Ahmad B, Alghanmi M, Alsaedi A, Srivastava HM, Ntouyas SK. The Langevin Equation in Terms of Generalized Liouville–Caputo Derivatives with Nonlocal Boundary Conditions Involving a Generalized Fractional Integral. Mathematics. 2019; 7(6):533. https://doi.org/10.3390/math7060533
Chicago/Turabian StyleAhmad, Bashir, Madeaha Alghanmi, Ahmed Alsaedi, Hari M. Srivastava, and Sotiris K. Ntouyas. 2019. "The Langevin Equation in Terms of Generalized Liouville–Caputo Derivatives with Nonlocal Boundary Conditions Involving a Generalized Fractional Integral" Mathematics 7, no. 6: 533. https://doi.org/10.3390/math7060533
APA StyleAhmad, B., Alghanmi, M., Alsaedi, A., Srivastava, H. M., & Ntouyas, S. K. (2019). The Langevin Equation in Terms of Generalized Liouville–Caputo Derivatives with Nonlocal Boundary Conditions Involving a Generalized Fractional Integral. Mathematics, 7(6), 533. https://doi.org/10.3390/math7060533