Distance Measures between the Interval-Valued Complex Fuzzy Sets
Abstract
:1. Introduction
2. Preliminaries
3. Distance Measures between IVCFSs
- (i)
- and if and only if ,
- (ii)
- ,
- (iii)
- .
- The Hamming distance:
- The Euclidean distance:
- The normalized Hamming distance:
- The normalized Euclidean distance:
- The normalized weighted Hamming distance:
- The normalized weighted Euclidean distance:
4. Rotational Invariance and Reflectional Invariance
5. Numerical Example for Decision-Making
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ramot, D.; Milo, R.; Friedman, M.; Kandel, A. Complex fuzzy sets. IEEE Trans. Fuzzy Syst. 2002, 10, 171–186. [Google Scholar] [CrossRef]
- Alkouri, A.M.J.S.; Salleh, A.R. Complex intuitionistic fuzzy sets. In Proceedings of the International Conference on Fundamental and Applied Sciences (ICFAS 2012), Kuala Lumpur, Malaysia, 12–14 June 2012; pp. 464–470. [Google Scholar]
- Ali, M.; Smarandache, F. Complex neutrosophic set. Neural Comput. Appl. 2017, 28, 1–18. [Google Scholar] [CrossRef]
- Ali, M.; Dat, L.Q.; Smarandache, F. Interval complex neutrosophic set: Formulation and applications in decision-making. Int. J. Fuzzy Syst. 2018, 20, 986–999. [Google Scholar] [CrossRef]
- Al-Qudah, Y.; Hassan, N. Complex multi-fuzzy soft set: Its entropy and similarity measure. IEEE Access 2018, 6, 65002–65017. [Google Scholar] [CrossRef]
- Garg, H.; Rani, D. Complex interval-valued intuitionistic fuzzy sets and their aggregation operators. Fundam. Inform. 2019, 164, 61–101. [Google Scholar] [CrossRef]
- Selvachandran, G.; Maji, P.K.; Abed, I.E.; Salleh, A.R. Complex vague soft sets and its distance measures. J. Intell. Fuzzy Syst. 2016, 31, 55–68. [Google Scholar] [CrossRef]
- Greenfield, S.; Chiclana, F.; Dick, S. Interval-valued complex fuzzy logic. In Proceedings of the 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC, Canada, 24–29 July 2016; pp. 2014–2019. [Google Scholar]
- Greenfield, S.; Chiclana, F.; Dick, S. Join and meet operations for interval-valued complex fuzzy logic. In Proceedings of the 2016 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS), El Paso, TX, USA, 31 October–4 November 2016; pp. 1–5. [Google Scholar]
- Ramot, D.; Friedman, M.; Langholz, G.; Kandel, A. Complex fuzzy logic. IEEE Trans. Fuzzy Syst. 2003, 11, 450–461. [Google Scholar] [CrossRef]
- Zhang, G.; Dillon, T.S.; Cai, K.-Y.; Ma, J.; Lu, J. Operation properties and delta-equalities of complex fuzzy sets. Int. J. Approx. Reason. 2009, 50, 1227–1249. [Google Scholar] [CrossRef]
- Hu, B.; Bi, L.; Dai, S. The Orthogonality between Complex Fuzzy Sets and Its Application to Signal Detection. Symmetry 2017, 9, 175. [Google Scholar] [CrossRef]
- Rani, D.; Garg, H. Complex intuitionistic fuzzy power aggregation operators and their applications in multicriteria decision-making. Expert Syst. 2018, e12325. [Google Scholar] [CrossRef]
- Garg, H.; Rani, D. Some Generalized Complex Intuitionistic Fuzzy Aggregation Operators and Their Application to Multicriteria Decision-Making Process. Arab. J. Sci. Eng. 2019, 44, 2679–2698. [Google Scholar] [CrossRef]
- Bi, L.; Dai, S.; Hu, B. Complex fuzzy geometric aggregation operators. Symmetry 2018, 10, 251. [Google Scholar] [CrossRef]
- Bi, L.; Dai, S.; Hu, B.; Li, S. Complex fuzzy arithmetic aggregation operators. J. Intell. Fuzzy Syst. 2019, 26, 2765–2771. [Google Scholar] [CrossRef]
- Chen, Z.; Aghakhani, S.; Man, J.; Dick, S. ANCFIS: A Neuro-Fuzzy Architecture Employing Complex Fuzzy Sets. IEEE Trans. Fuzzy Syst. 2011, 19, 305–322. [Google Scholar] [CrossRef]
- Li, C. Complex Neuro-Fuzzy ARIMA Forecasting. A New Approach Using Complex Fuzzy Sets. IEEE Trans. Fuzzy Syst. 2013, 21, 567–584. [Google Scholar] [CrossRef]
- Li, C.; Chiang, T.-W.; Yeh, L.-C. A novel self-organizing complex neuro-fuzzy approach to the problem of time series forecasting. Neurocomputing 2013, 99, 467–476. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, G.; Lu, J. A method for multiple periodic factor prediction problems using complex fuzzy sets. IEEE Trans. Fuzzy Syst. 2012, 20, 32–45. [Google Scholar]
- Li, C.; Wu, T.; Chan, F.-T. Self-learning complex neuro-fuzzy system with complex fuzzy sets and its application to adaptive image noise canceling. Neurocomputing 2012, 94, 121–139. [Google Scholar] [CrossRef]
- Liu, X. Entropy, distance measure and similarity measure of fuzzy sets and their relations. Fuzzy Sets Syst. 1992, 52, 305–318. [Google Scholar]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Szmidt, E.; Kacprzyk, J. Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000, 114, 505–518. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, L. New distance measures between intuitionistic fuzzy sets and interval-valued fuzzy sets. Inf. Sci. 2013, 245, 181–196. [Google Scholar] [CrossRef]
- Wang, W.Q.; Xin, X.L. Distance measure between intuitionistic fuzzy sets. Pattern Recognit. Lett. 2005, 26, 2063–2069. [Google Scholar] [CrossRef]
- Grzegorzewski, P. Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric. Fuzzy Sets Syst. 2004, 148, 319–328. [Google Scholar] [CrossRef]
- Xu, Z.S.; Chen, J. An overview of distance and similarity measures of intuitionistic fuzzy sets. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 2008, 16, 529–555. [Google Scholar] [CrossRef]
- Zeng, W.Y.; Guo, P. Normalized distance, similarity measure, inclusion measure and entropy of interval-valued fuzzy sets and their relationship. Inf. Sci. 2008, 178, 1334–1342. [Google Scholar] [CrossRef]
- Hu, B.; Bi, L.; Dai, S.; Li, S. Distances of Complex Fuzzy Sets and Continuity of Complex Fuzzy Operations. J. Intell. Fuzzy Syst. 2018, 35, 2247–2255. [Google Scholar] [CrossRef]
- Alkouri, A.U.M.; Salleh, A.R. Linguistic variables, hedges and several distances on complex fuzzy sets. J. Intell. Fuzzy Syst. 2014, 26, 2527–2535. [Google Scholar]
- Bi, L.; Hu, B.; Li, S.; Dai, S. The Parallelity of Complex Fuzzy sets and Parallelity Preserving Operators. J. Intell. Fuzzy Syst. 2018, 34, 4173–4180. [Google Scholar] [CrossRef]
- Hu, B.; Bi, L.; Dai, S.; Li, S. The approximate parallelity of complex fuzzy sets. J. Intell. Fuzzy Syst. 2018, 35, 6343–6351. [Google Scholar] [CrossRef]
- Bi, L.; Zeng, Z.; Hu, B.; Dai, S. Two Classes of Entropy Measures for Complex Fuzzy Sets. Mathematics 2019, 7, 96. [Google Scholar] [CrossRef]
- Rani, D.; Garg, H. Distance measures between the complex intuitionistic fuzzy sets and its applications to the decision-making process. Int. J. Uncertain. Quantif. 2017, 7, 423–439. [Google Scholar] [CrossRef]
- Selvachandran, G.; Garg, H.; Alaroud, M.H.; Salleh, A.R. Similarity measure of complex vague soft sets and its application to pattern recognition. Int. J. Fuzzy Syst. 2018, 20, 1901–1914. [Google Scholar] [CrossRef]
- Selvachandran, G.; Garg, H.; Quek, S. Vague entropy measure for complex vague soft sets. Entropy 2018, 20, 403. [Google Scholar] [CrossRef]
- Dick, S. Towards Complex Fuzzy Logic. IEEE Trans. Fuzzy Syst. 2005, 13, 405–414. [Google Scholar] [CrossRef]
dH | dE | dnH | dnE | dnwH | dnwE | |
---|---|---|---|---|---|---|
A1 | 0.95 | 0.4743 | 0.19 | 0.2121 | 0.2175 | 0.2424 |
A2 | 1.225 | 0.5766 | 0.245 | 0.2579 | 0.245 | 0.2598 |
A3 | 1.325 | 0.6144 | 0.265 | 0.2748 | 0.255 | 0.2646 |
A4 | 0.875 | 0.433 | 0.175 | 0.1937 | 0.16 | 0.1761 |
Ordering | |
---|---|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, S.; Bi, L.; Hu, B. Distance Measures between the Interval-Valued Complex Fuzzy Sets. Mathematics 2019, 7, 549. https://doi.org/10.3390/math7060549
Dai S, Bi L, Hu B. Distance Measures between the Interval-Valued Complex Fuzzy Sets. Mathematics. 2019; 7(6):549. https://doi.org/10.3390/math7060549
Chicago/Turabian StyleDai, Songsong, Lvqing Bi, and Bo Hu. 2019. "Distance Measures between the Interval-Valued Complex Fuzzy Sets" Mathematics 7, no. 6: 549. https://doi.org/10.3390/math7060549
APA StyleDai, S., Bi, L., & Hu, B. (2019). Distance Measures between the Interval-Valued Complex Fuzzy Sets. Mathematics, 7(6), 549. https://doi.org/10.3390/math7060549