Traveling Waves in a Nonlocal Dispersal SIR Model with Standard Incidence Rate and Nonlocal Delayed Transmission
Abstract
:1. Introduction
2. Some Preliminaries
- (i)
- if , then for all ;
- (ii)
- if , then has two different positive roots with and
3. Existence of Traveling Waves
3.1. Upper-Lower Solution of System (6)
3.2. Traveling Wave Solution for (6) on
3.3. Asymptotic Behavior
- (1)
- exists and ;
- (2)
- If , then .
4. Nonexistence of Traveling Waves
5. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hosono, Y.; Ilyas, B. Travelling waves for a simple diffusive epidemic model. Math. Models Methods Appl. Sci. 1995, 5, 935–966. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, W. Traveling waves of a diffusive Kermack-McKendrick epidemic model with nonlocal delayed transmission. Proc. R. Soc. A 2010, 466, 237–261. [Google Scholar] [CrossRef]
- Ducrot, A.; Magal, P. Travelling wave solutions for an infection-age structured model with diffusion. Proc. R. Soc. Edinb. Sect. A 2009, 139, 459–482. [Google Scholar] [CrossRef] [Green Version]
- Ducrot, A.; Magal, P. Travelling wave solutions for an infection-age structured epidemic model with external supplies. Nonlinearity 2011, 24, 2891–2911. [Google Scholar] [CrossRef]
- Yang, J.; Liang, S.; Zhang, Y. Travelling waves of a delayed SIR epidemic model with nonlinear incidence rate and spatial diffusion. PLoS ONE 2011, 6, e21128. [Google Scholar] [CrossRef]
- Xu, Z. Traveling waves in a Kermack-Mckendrick epidemic model with diffusion and latent period. Nonlinear Anal. 2014, 111, 66–81. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W. Existence of traveling wave solutions for influenza model with treatment. J. Math. Anal. Appl. 2014, 419, 469–495. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; Wang, K. Minimal wave speed for a class of non-cooperative diffusion- reaction system. J. Differ. Equ. 2016, 260, 2763–2791. [Google Scholar] [CrossRef]
- Trofimchuk, S.; Volpert, V. Traveling waves for a bistable reaction-diffusion equation with delay. SIAM J. Math. Anal. 2018, 50, 1175–1199. [Google Scholar] [CrossRef]
- Fu, S. Traveling waves for a diffusive SIR model with delay. J. Math. Anal. Appl. 2016, 435, 20–37. [Google Scholar] [CrossRef]
- Bai, Z.; Wu, S. Traveling waves in a delayed SIR epidemic model with nonlinear incidence. Appl. Math. Comput. 2015, 263, 221–232. [Google Scholar] [CrossRef]
- Bai, Z.; Zhang, S. Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 1370–1381. [Google Scholar] [CrossRef]
- Li, X.; Pan, S. Traveling wave solutions of a delayed cooperative system. Mathematics 2019, 7, 269. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, R.; Zhao, X.; Feng, Z. Traveling wave solutions of a nonlocal dispersal predator-prey model with spatiotemporal delay. Z. Angew. Math. Phys. 2018, 69, 146. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Lin, G. Traveling waves of a delayed diffusive SIR epidemic model. Commun. Pure Appl. Math. 2015, 14, 1001–1022. [Google Scholar] [CrossRef]
- Zhou, K.; Han, M.; Wang, Q. Traveling wave solutions for a delayed diffusive SIR epidemic model with nonlinear incidence rate and external supplies. Math. Methods Appl. Sci. 2017, 7, 2772–2783. [Google Scholar] [CrossRef]
- Yu, X.; Wu, C.; Weng, P. Traveling waves for a SIRS model with nonlocal diffusion. Int. J. Biomath. 2012, 5, 57–82. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, Q. Existence of traveling waves for a delayed SIRS epidemic diffusion model with saturation incidence rate. Abstr. Appl. Anal. 2014, 2014, 369072. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Wu, J. Traveling waves of diffusive predator-prey systems: Disease outbreak propagation. Discret. Contin. Dyn. Syst. 2012, 32, 3303–3324. [Google Scholar] [Green Version]
- Li, W.; Lin, G.; Ma, C.; Yang, F. Traveling waves of a nonlocal delayed SIR epidemic model without outbreak threshold. Discret. Contin. Dyn. Syst. Ser. B 2014, 19, 467–484. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X. Traveling wave phenomena in a Kermack-McKendrick SIR model. J. Dyn. Differ. Equ. 2016, 28, 143–166. [Google Scholar] [CrossRef]
- Zhen, Z.; Wei, J.; Tian, L.; Zhou, J.; Chen, W. Wave propagation in a diffusive SIR epidemic model with spatiotemporal delay. Math. Methods Appl. Sci. 2018, 41, 7074–7098. [Google Scholar] [CrossRef]
- Zhang, T. Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations. J. Differ. Equ. 2017, 262, 4724–4770. [Google Scholar] [CrossRef]
- Bates, P.; Fife, P.; Ren, X.; Wang, X. Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 1997, 138, 105–136. [Google Scholar] [CrossRef]
- Coville, J.; Dupaigne, L. On a non-local equation arising in population dynamics. Proc. R. Soc. Edinb. Sect. A 2007, 137, 727–755. [Google Scholar] [CrossRef] [Green Version]
- Kao, C. Lou, Y.; Shen, W. Random dispersal vs. nonlocal dispersal. Discret. Contin. Dyn. Syst. 2010, 26, 551–596. [Google Scholar]
- Yang, F.; Li, Y.; Li, W.; Wang, Z. Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model. Discret. Contin. Dyn. Syst. Ser. B 2013, 18, 1969–1993. [Google Scholar] [CrossRef]
- Li, W.; Yang, F. Traveling waves for a nonlocal dispersal SIR model with standard incidence. J. Integral Equ. Appl. 2014, 26, 243–273. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Yang, F. Traveling waves for a nonlocal dispersal SIR model with delay and external supplies. Appl. Math. Comput. 2014, 247, 723–740. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Yang, F. Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission. Commun. Nonlinear Sci. Numer. Simul. 2015, 27, 136–152. [Google Scholar] [CrossRef]
- Cheng, H.; Yuan, R. Traveling waves of a nonlocal dispersal Kermack-McKendrick epidemic model with delayed transmission. J. Evol. Equ. 2017, 17, 979–1002. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, Y. Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay. Discret. Contin. Dyn. Syst. Ser. B 2017, 22, 1719–1741. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Li, W.; Wang, Z. Traveling waves in a nonlocal dispersal SIR epidemic model. Nonlinear Anal. Real World Appl. 2015, 23, 129–147. [Google Scholar] [CrossRef]
- Hartman, P. Ordinary Differential Equations; John Wiley: New York, NY, USA, 1964. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.; Zhou, K. Traveling Waves in a Nonlocal Dispersal SIR Model with Standard Incidence Rate and Nonlocal Delayed Transmission. Mathematics 2019, 7, 641. https://doi.org/10.3390/math7070641
Wu K, Zhou K. Traveling Waves in a Nonlocal Dispersal SIR Model with Standard Incidence Rate and Nonlocal Delayed Transmission. Mathematics. 2019; 7(7):641. https://doi.org/10.3390/math7070641
Chicago/Turabian StyleWu, Kuilin, and Kai Zhou. 2019. "Traveling Waves in a Nonlocal Dispersal SIR Model with Standard Incidence Rate and Nonlocal Delayed Transmission" Mathematics 7, no. 7: 641. https://doi.org/10.3390/math7070641
APA StyleWu, K., & Zhou, K. (2019). Traveling Waves in a Nonlocal Dispersal SIR Model with Standard Incidence Rate and Nonlocal Delayed Transmission. Mathematics, 7(7), 641. https://doi.org/10.3390/math7070641