Appell-Type Functions and Chebyshev Polynomials
Abstract
:1. Introduction
2. Recalling the Chebyshev Polynomials
Consequences of the Euler-Type Formula
3. The Even and Odd Part of Appell Polynomials
4. 1st Kind Bessel Functions
Representation by Chebyshev Polynomials
5. Appel–Bessel Functions
5.1. Representation of the Appell–Bessel Functions
5.2. Connection with the Appel–Bessel Functions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Srivastava, H.M.; Ricci, P.E.; Natalini, P. A Family of Complex Appell Polynomial Sets. Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. 2019, 113, 2359–2371. [Google Scholar] [CrossRef]
- Khan, S.; Naikoo, S.A. Certain discrete Bessel convolutions of the Appell polynomials. Miskolc Math. Notes 2019, 20, 271–279. [Google Scholar]
- Srivastava, H.M. Some characterizations of Appell and q-Appell polynomials. Ann. Mat. Pura Appl. 1982, 130, 321–329. [Google Scholar] [CrossRef]
- Pintér, Á.; Srivastava, H.M. Addition theorems for the Appell polynomials and the associated classes of polynomial expansions. Aequ. Math. 2013, 85, 483–495. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Özarslan, M.A.; Yaşar, B.Y. Difference equations for a class of twice-iterated Δh-Appell sequences of polynomials. Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. 2019, 113, 1851–1871. [Google Scholar] [CrossRef]
- Verde-Star, L.; Srivastava, H.M. Some binomial formulas of the generalized Appell form. J. Math. Anal. Appl. 2002, 274, 755–771. [Google Scholar] [CrossRef] [Green Version]
- Rivlin, T.J. The Chebyshev Polynomials; J. Wiley: New York, NY, USA, 1990. [Google Scholar]
- Masjed-Jamei, M.; Beyki, M.R.; Koepf, W. A New Type of Euler Polynomials and Numbers. Mediterr. J. Math. 2018, 15, 138. [Google Scholar] [CrossRef]
- Appell, P. Sur une classe de polynômes. Ann. Sci. Ec. Norm. Sup. 1880, 9, 119–144. [Google Scholar] [CrossRef]
- Appell, P.; Kampé de Fériet, J. Fonctions Hypergéométriques et Hypersphériques. Polynômes d’Hermite; Gauthier-Villars: Paris, France, 1926. [Google Scholar]
- Sheffer, I.M. Some properties of polynomials sets of zero type. Duke Math. J. 1939, 5, 590–622. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Ellis Horwood Limited: Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
- Watson, G.N. A Treatise on the Theory of Bessel Functions, 2nd ed.; Cambridge Univ. Press: Cambridge, UK, 1966. [Google Scholar]
- Dattoli, G. Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle. In Advanced Special Functions and Applications; Cocolicchio, D., Dattoli, G., Srivastava, H.M., Eds.; Aracne Editrice: Rome, Italy, 2000; pp. 147–164. [Google Scholar]
- Dattoli, G.; Ricci, P.E.; Srivastava, H.M. Advanced Special Functions and Related Topics in Probability and in Differential Equations. In Proceedings of the Melfi School on Advanced Topics in Mathematics and Physics, Melfi, Italy, 24–29 June 2001. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natalini, P.; Ricci, P.E. Appell-Type Functions and Chebyshev Polynomials. Mathematics 2019, 7, 679. https://doi.org/10.3390/math7080679
Natalini P, Ricci PE. Appell-Type Functions and Chebyshev Polynomials. Mathematics. 2019; 7(8):679. https://doi.org/10.3390/math7080679
Chicago/Turabian StyleNatalini, Pierpaolo, and Paolo Emilio Ricci. 2019. "Appell-Type Functions and Chebyshev Polynomials" Mathematics 7, no. 8: 679. https://doi.org/10.3390/math7080679