Design of a New Chaotic System Based on Van Der Pol Oscillator and Its Encryption Application
Abstract
:1. Introduction
2. System Description
3. Design and Analysis of the Dynamic System
3.1. Design of the Dynamic System
3.2. Equilibrium Point
3.3. Lyapunov Exponent Analysis
3.4. Bifurcation Diagram Analysis
4. Design and Application of Chaotic Encryption Algorithms
4.1. Algorithm Design
4.2. Simulation Experiment
4.3. Security Analysis
4.3.1. Key Sensitivity and Key Space
4.3.2. Statistical Analysis
4.3.3. NIST Test
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
VdPVP | Van der Pol oscillator with variable parameter |
References
- Chen, G.; Ueta, T. Yet another chaotic attractor. Int. J. Bifurc. Chaos 1999, 9, 1465–1466. [Google Scholar] [CrossRef]
- Felicio, C.C.; Rech, P.C. On the dynamics of five- and six-dimensional Lorenz models. J. Phys. Commun. 2018, 2, 025028. [Google Scholar] [CrossRef]
- Sooraksa, P.; Chen, G. Chen system as a controlled weather model-physical principle, engineering design and real applications. Int. J. Bifurc. Chaos 2018, 28, 1830009-12. [Google Scholar] [CrossRef]
- Yang, Q.; Bai, M. A new 5D hyperchaotic system based on modified generalized Lorenz system. Nonlinear Dyn. 2017, 88, 189–221. [Google Scholar] [CrossRef]
- Cui, J.; Liang, J.; Lin, Z. Stability analysis for periodic solutions of the Van der Pol–Duffing forced oscillator. Phys. Scr. 2016, 91, 015201-7. [Google Scholar] [CrossRef]
- Brizard, A.J.; Westland, M.C. Motion in an asymmetric double well. Commun. Nonlinear Sci. Numer. Simul. 2017, 43, 351–368. [Google Scholar] [CrossRef] [Green Version]
- Ueda, Y.; Akamatsu, N. Chaotically transitional phenomena in the forced negative-resistance oscillator. IEEE Trans. Circuits Syst. 1981, 28, 217–224. [Google Scholar] [CrossRef]
- Wiggers, V.; Rech, P.C. Multistability and organization of periodicity in a Van der Pol–Duffing oscillator. Chaos Solitons Fractals 2017, 103, 632–637. [Google Scholar] [CrossRef]
- Roup, A.V.; Bernstein, D.S. Adaptive stabilization of a class of nonlinear systems with nonparametric uncertainty. IEEE Trans. Autom. Control 2001, 46, 1821–1825. [Google Scholar] [CrossRef]
- Chedjou, J.C.; Fotsin, H.B.; Woafo, P. Behavior of the van der pol oscillator with two external periodic forces. Phys. Scr. 1997, 55, 390–393. [Google Scholar] [CrossRef]
- Kamdoum, T.V.; Takougang, K.S.; Fautso, K.G.; Bertrand, F.H.; Kisito, T.P. Coexistence of attractors in autonomous Van der Pol–Duffing Jerk oscillator: Analysis, chaos control and synchronisation in its fractional-order form. Pramana 2018, 91, 1–12. [Google Scholar]
- Wiggers, V.; Rech, P.C. On symmetric and asymmetric Van der Pol–Duffing oscillators. Eur. Phys. J. B 2018, 91, 144–146. [Google Scholar] [CrossRef]
- Kuiate, G.F.; Rajagopal, K.; Kingni, S.T.; Tamba, V.K.; Jafari, S. Autonomous Van der Pol–duffing snap oscillator: Analysis, synchronization and applications to real-time image encryption. Int. J. Dyn. Control 2018, 6, 1008–1022. [Google Scholar] [CrossRef]
- Makouo, L.; Woafo, P. Experimental observation of bursting patterns in van der pol oscillators. Chaos Solitons Fractals 2017, 94, 95–101. [Google Scholar] [CrossRef]
- Chen, G.; Lai, D. Anticontrol of chaos via feedback. Proc. IEEE Conf. Decis. Control 1998, 1, 367–372. [Google Scholar] [CrossRef]
- Hu, G.; Xiao, D.; Zhang, Y.; Xiang, T. An efficient chaotic image cipher with dynamic lookup table driven bit-level permutation strategy. Nonlinear Dyn. 2017, 87, 1359–1375. [Google Scholar] [CrossRef]
- Hamdi, B.; Hassene, S. Innovative image encryption scheme based on a new rapid hyperchaotic system and random iterative permutation. Multimed. Tools Appl. 2018, 77, 30841–30863. [Google Scholar]
- Wang, X.; Wang, Y.; Wang, S.; Zhang, Y.; Wu, X. A novel pseudo-random coupled LP spatiotemporal chaos and its application in image encryption. Chin. Phys. B 2018, 27, 423–433. [Google Scholar] [CrossRef]
- Rehman, A.; Liao, X. A novel robust dual diffusion/confusion encryption technique for color image based on Chaos, DNA and SHA-2. Multimed. Tools Appl. 2019, 78, 2105–2133. [Google Scholar] [CrossRef]
- Chen, G.; Mao, Y.; Chui, C.K. A symmetric image encryption scheme nased on 3D chaotic cat maps. Chaos Solitons Fractals 2004, 21, 749–761. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, W.; Wong, K.W.; Yu, H. A chaos-based symmetric image encryption scheme using a nit-level permutation. Inf. Sci. 2011, 181, 1171–1186. [Google Scholar] [CrossRef]
- Lin, Z.; Yu, S.; Lu, J.; Cai, S.; Chen, G. Design and ARM-embedded implementation of a chaotic map-based real-time secure video communication system. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 1203–1216. [Google Scholar]
- Alvarez, G.; Li, S. Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 2016, 16, 2129–2153. [Google Scholar] [CrossRef]
- Li, C.; Lin, D.; Lü, J. Cryptanalyzing an image-scrambling encryption algorithm of pixel bits. IEEE Multimed. 2016, 24, 64–71. [Google Scholar] [CrossRef]
- Özkaynak, F. Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn. 2018, 92, 305–313. [Google Scholar] [CrossRef]
- Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.; Heckert, A.; et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. Special Publication 800–22 Revision 1, National Institute of Standards and Technology. 2008. Available online: http://csrc.nist.gov/publications/PubsSPs.html (accessed on 1 May 2019).
- Murillo-Escobar, M.A.; Cruz-Hernández, C.; Cardoza-Avendaño, L.; Méndez-Ramírez, R. A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 2017, 87, 407–425. [Google Scholar] [CrossRef]
- He, J.; Yu, S.; Cai, J. Topological horseshoe analysis for a three-dimensional anti-control system and its application. Optik 2016, 127, 9444–9456. [Google Scholar] [CrossRef]
Variable Errors | Parameter Errors | Recover Original Image |
---|---|---|
0 | No | |
0 | No | |
0 | No | |
0 | No | |
0 | No | |
0 | No |
Direction | Original Image | Chaos Scrambling Image | Ciphered Image |
---|---|---|---|
Horizontal | 0.9535 | 0.0105 | −0.0076 |
Vertical | 0.9754 | −0.0011 | 0.0141 |
Diagonal | 0.93334 | 0.0061 | −0.0107 |
Statistical Tests | p-Value |
---|---|
Frequency | 0.2248 |
Block frequency | 0.0519 |
Cumulative sums | 0.6583 |
Runs | 0.3345 |
Longest run | 0.3191 |
Rank | 0.5141 |
FFT | 0.8831 |
Non-overlapping template | 0.4824 |
Overlapping template | 0.8165 |
Universal | 0.4944 |
Approximate entropy | 0.3345 |
Random excursions | 0.5587 |
Random excursions variant | 0.4683 |
Linear complexity | 0.3041 |
Serial | 0.4950 |
Success | All |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Cai, J. Design of a New Chaotic System Based on Van Der Pol Oscillator and Its Encryption Application. Mathematics 2019, 7, 743. https://doi.org/10.3390/math7080743
He J, Cai J. Design of a New Chaotic System Based on Van Der Pol Oscillator and Its Encryption Application. Mathematics. 2019; 7(8):743. https://doi.org/10.3390/math7080743
Chicago/Turabian StyleHe, Jianbin, and Jianping Cai. 2019. "Design of a New Chaotic System Based on Van Der Pol Oscillator and Its Encryption Application" Mathematics 7, no. 8: 743. https://doi.org/10.3390/math7080743
APA StyleHe, J., & Cai, J. (2019). Design of a New Chaotic System Based on Van Der Pol Oscillator and Its Encryption Application. Mathematics, 7(8), 743. https://doi.org/10.3390/math7080743