Existence of Solutions for Kirchhoff-Type Fractional Dirichlet Problem with p-Laplacian
Abstract
:1. Introduction and Main Results
- (f1) there exist constants , and a nonnegative function such that
- (f2) there exists such that ;
- (or (f2) there exists such that );
- (f3) there exists such that
2. Preliminaries
3. Proofs
- If , then by (H1), the conclusion (H1) holds;If , by (H1), we haveIf , then by the definition of m, we have
- For all , we have
4. Example
- (i)
- Note that
- (ii)
- Note that , and
- (iii)
- Let . ThenThen by , (10)–(12), we haveCompared , and , it is easy to see .
Author Contributions
Funding
Conflicts of Interest
References
- Carpinteri, A.; Mainardi, F. Fractals and Fractional Calculus in Continuum Mechanics; Springer: Berlin, Germany, 1997. [Google Scholar]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publisher: Redding, CT, USA, 2006. [Google Scholar]
- Miller, M.S.; Ross, B. An Introduction to the Fractional Integrals and Derivatives-Theory and Application; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic: New York, NY, USA, 1999. [Google Scholar]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific Publishing Company: Singapore, 2011. [Google Scholar]
- El-Nabulsi, R.A. Fractional quantum Euler-Cauchy equation in the Schrödinger picture, complexified harmonic oscillators and emergence of complexified Lagrangian and Hamiltonian dynamics. Mod. Phys. Lett. B 2009, 23, 3369–3386. [Google Scholar] [CrossRef]
- Hilfer, E. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Agrawal, O.P. Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 2002, 272, 368–379. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, O.P. Fractional variational calculus in terms of Riesz Fractional derivatives. J. Phys. A Math. Gen. 2007, 40, 1–17. [Google Scholar] [CrossRef]
- Agrawal, O.P.; Tenreiro-Machado, J.A.; Sabatier, J. Fractional Derivatives and their Application, Nonlinear Dynamics; Springer: Berlin, Germany, 2004; Volume 38. [Google Scholar]
- El-Nabulsi, R.A. Modifications at large distances from fractional and fractal arguments. Fractals 2010, 18, 185–190. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Stat. Phys. 2018, 172, 1617–1640. [Google Scholar] [CrossRef]
- Riewe, F. Mechanics with fractional derivatives. Phys. Rev. E. 1997, 55, 3582–3592. [Google Scholar] [CrossRef]
- Lim, S.C. Fractional derivative quantum fields at positive temperature. Phys. A Stat. Mech. Appl. 2006, 363, 269–281. [Google Scholar] [CrossRef]
- Ferreira, M.; Vieira, N. Eigenfunctions and Fundamental Solutions of the Fractional Laplace and Dirac Operators: The Riemann-Liouville Case. Complex Anal. Oper. Theory 2016, 10, 1081–1110. [Google Scholar] [CrossRef] [Green Version]
- Raspini, A. Simple solutions of the fractional Dirac equation of order 2/3. Phys. Scr. 2001, 64, 20–22. [Google Scholar] [CrossRef]
- Vźquez, J.L. Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discret. Contin. Dyn. Syst. Ser. 2014, 7, 857–885. [Google Scholar] [CrossRef]
- Guo, B.; Pu, X.; Huang, F. Fractional Partial Differential Equations and Their Numerical Solutions; World Scientific: Hackensack, NJ, USA, 2015. [Google Scholar]
- Caffarelli, L.A.; Vasseur, A. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 2010, 171, 1903–1930. [Google Scholar] [CrossRef] [Green Version]
- Kirchhoff, G. Vorlesungen über Mechanik; Lectures on Mechanics; Teubner: Stuttgart, Germany, 1883. [Google Scholar]
- Bernstein, S. Sur une classe d’équations fonctionelles aux dérivées partielles (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 1940, 4, 17–26. [Google Scholar]
- D’Ancona, P.; Spagnolo, S. A class of nonlinear hyperbolic problems with global solutions. Arch. Ration. Mech. Anal. 1993, 124, 201–219. [Google Scholar] [CrossRef]
- Greenberg, J.M.; Hu, S.C. The initial value problem for a stretched string. Q. Appl. Math. 1980, 38, 289–311. [Google Scholar] [CrossRef] [Green Version]
- Pokhozhaev, S.I. On a class of quasilinear hyperbolic equations. Matematicheskii Sbornik 1975, 25, 145–158. [Google Scholar]
- Arosio, A.; Panizzi, S. On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 1996, 348, 305–330. [Google Scholar] [CrossRef]
- Cavalcanti, M.M.; Cavalcanti, V.N.D.; Soriano, J.A. Global existence and uniform decay rates for the Kirchhoff- Carrier equation with nonlinear dissipation. Adv. Differ. Equ. 2001, 6, 701–730. [Google Scholar]
- Ancona, P.D.; Spagnolo, S. Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math. 1992, 108, 247–262. [Google Scholar] [CrossRef]
- Alves, C.O.; Corrêa, F.; Ma, T.F. Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 2005, 49, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Perera, K.; Zhang, Z. Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 2006, 221, 246–255. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Li, G.B.; Peng, S.J. Concentrating bound states for Kirchhoff type problems in ℝ3 involving critical Sobolev exponents. Adv. Nonlinear Stud. 2014, 14, 483–510. [Google Scholar] [CrossRef]
- Li, A.; Su, J. Existence and multiplicity of solutions for Kirchhoff-type equation with radial potentials in ℝ3. Z. Angew. Math. Phys. 2015, 66, 3147–3158. [Google Scholar] [CrossRef]
- Tang, X.H.; Cheng, B. Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Differ. Equ. 2016, 261, 2384–2402. [Google Scholar] [CrossRef]
- Yang, Z.; Da, F. Stability of attractors for the Kirchhoff wave equation with strong damping and critical nonlinearities. J. Math. Anal. Appl. 2019, 469, 298–320. [Google Scholar] [CrossRef]
- Dreher, M. The Kirchhoff equation for the p-Laplacian. Rendiconti Del Seminario Matematico 2006, 64, 217–238. [Google Scholar]
- Francisco, J.; Corrêa, S.A.; Figueiredo, G.M. On an elliptic equation of p-Kirchhoff type via variational methods. Bull. Aust. Math. Soc. 2006, 74, 263–277. [Google Scholar]
- Liu, D. On a p-Kirchhoff equation via Fountain Theorem and Dual Fountain Theorem. Nonlinear Anal. 2010, 72, 302–308. [Google Scholar] [CrossRef]
- Autuori, G.; Pucci, P. Kirchhoff systems with dynamic boundary conditions. Nonlinear Anal. 2010, 73, 1952–1965. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Gao, Q. Existence of nontrivial solutions for p-Kirchhoff type equations. Bound. Value Probl. 2013, 2013, 279. [Google Scholar] [CrossRef] [Green Version]
- Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 2006, 45, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Ervin, V.J.; Heuer, N.; Roop, J.P. Numerical approximation of a time dependent, nonlinear, spacefractional diffusion equation. SIAM J. Numer. Anal. 2007, 45, 572–591. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, P.; Liu, F.; Anh, V.; Turner, I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 2008, 46, 1079–1095. [Google Scholar] [CrossRef] [Green Version]
- Jiao, F.; Zhou, Y. Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurcat. Chaos 2012, 22, 1250086. [Google Scholar] [CrossRef]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific Publishing Company: Singapore, 2014. [Google Scholar]
- Zhao, Y.; Chen, H.; Qin, B. Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods. Appl. Math. Comput. 2015, 257, 417–427. [Google Scholar] [CrossRef]
- Bonanno, G.; Rodriguez-López, R.; Tersian, S. Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 2014, 17, 717–744. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, L. Multiplicity results for impulsive fractional differential equations with p-Laplacian via variational methods. Bound. Value Probl. 2017, 2017, 123. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Zhang, X. Infinitely many solutions for a class of fractional impulsive coupled systems with (p,q)- Laplacian. Discret. Dyn. Nat. Soc. 2018, 2018, 9256192. [Google Scholar] [CrossRef] [Green Version]
- Nyamoradi, N.; Zhou, Y. Existence results to some damped-like fractional differential equations. Int. J. Nonlinear Sci. Numer. Simul. 2017, 18, 88–103. [Google Scholar] [CrossRef]
- Chai, G.; Liu, W. Existence of solutions for the fractional Kirchhoff equations with sign-changing potential. Bound. Value Probl. 2018, 2018, 125. [Google Scholar] [CrossRef]
- Ekeland, I. Convexity Methods in Hamiltonian Mechanics; Springer-Verlag: Berlin, Germany, 1990. [Google Scholar]
- Li, G.; Wang, C. The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the Ambrosetti-Rabinowitz condition. Ann. Acad. Sci. Fenn. Math. 2011, 36, 461–480. [Google Scholar] [CrossRef]
- Chen, T.; Liu, W. Ground state solutions of Kirchhoff-type fractional Dirichlet problem with p-Laplacian. Adv. Differ. Equ. 2018, 2018, 436. [Google Scholar] [CrossRef]
- Costa, D.; Wang, Z.Q. Multiplicity results for a class of superlinear elliptic problems. Proc. Am. Math. Soc. 2005, 133, 787–794. [Google Scholar] [CrossRef]
- Medeiros, E.S.; Severo, U.B. On the existence of signed solutions for a quasilinear elliptic problem in ℝN. Mat. Contemp. 2007, 32, 193–205. [Google Scholar]
- Papageorgiou, N.S.; Radulescu, V.D.; Repov, D.D. Double-phase problems with reaction of arbitrary growth. Z. Angew. Math. Phys. 2018, 69, 108. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Tan, Z.; Sun, D. Multiplicity results for a nonlinear elliptic problem involving the fractional Laplacian. Acta Math. Sci. 2016, 36, 1793–1803. [Google Scholar] [CrossRef]
- doó, J.M.; Medeiros, E.; Severo, U. On the existence of signed and sign-changing solutions for a class of superlinear Schrödinger equations. J. Math. Anal. Appl. 2008, 342, 432–445. [Google Scholar] [CrossRef]
- He, T.; Yao, Z.; Sun, Z. Multiple and nodal solutions for parametric Neumann problems with nonhomogeneous differential operator and critical growth. J. Math. Anal. Appl. 2017, 449, 1133–1151. [Google Scholar] [CrossRef]
- Huang, C.; Gao, J. Existence of positive solutions for supercritical quasilinear Schrödinger elliptic equations. J. Math. Anal. Appl. 2019, 472, 705–727. [Google Scholar] [CrossRef]
- Kilbas, A.A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science Limited, AMS: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Willem, M. Minimax Theorems; Birkhauser: Boston, MA, USA, 1996. [Google Scholar]
- Rabinowitz, P.H. Minimax Methods in Critical Point Theory with Applications to Differential Equations; American Mathematical Society: Providence, RI, USA, 1986. [Google Scholar]
- Zhang, X.; Tang, X. Periodic solutions for an ordinary p-Laplacian system. Taiwan. J. Math. 2011, 15, 1369–1396. [Google Scholar] [CrossRef]
- Hewitt, E.; Stromberg, K. Real and Abstract Analysis; Springer: Berlin, Germany, 1965. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, D.; Liu, C.; Zhang, X. Existence of Solutions for Kirchhoff-Type Fractional Dirichlet Problem with p-Laplacian. Mathematics 2020, 8, 106. https://doi.org/10.3390/math8010106
Kang D, Liu C, Zhang X. Existence of Solutions for Kirchhoff-Type Fractional Dirichlet Problem with p-Laplacian. Mathematics. 2020; 8(1):106. https://doi.org/10.3390/math8010106
Chicago/Turabian StyleKang, Danyang, Cuiling Liu, and Xingyong Zhang. 2020. "Existence of Solutions for Kirchhoff-Type Fractional Dirichlet Problem with p-Laplacian" Mathematics 8, no. 1: 106. https://doi.org/10.3390/math8010106
APA StyleKang, D., Liu, C., & Zhang, X. (2020). Existence of Solutions for Kirchhoff-Type Fractional Dirichlet Problem with p-Laplacian. Mathematics, 8(1), 106. https://doi.org/10.3390/math8010106