Mathematical Model and Evaluation Function for Conflict-Free Warranted Makespan Minimization of Mixed Blocking Constraint Job-Shop Problems
Abstract
1. Introduction and Targeted Contribution
2. Literature Review
3. Problem Description
4. Mathematical Model
4.1. Parameters
4.2. Results Obtained on Mixed Blocking Constrained Jobshop Problems
5. Evaluation Function for Meta-Heuristics
5.1. Bierwirth Vector
5.2. Evaluation Function
5.3. Meta-Heuristics Proposed
6. Benchmarks and Computing Results
7. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Jackson, J.R. An extension of Johnson’s result on job lot scheduling. Nav. Res. Logist. Q. 1956, 3, 201–203. [Google Scholar] [CrossRef]
- Turker, A.; Aktepe, A.; Inal, A.; Ersoz, O.; Das, G.; Birgoren, B. A Decision Support System for Dynamic Job-Shop Scheduling Using Real-Time Data with Simulation. Mathematics 2019, 7, 278. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, S.; Li, T. A Meta-Model-Based Multi-Objective Evolutionary Approach to Robust Job Shop Scheduling. Mathematics 2019, 7, 529. [Google Scholar] [CrossRef]
- Sun, L.; Lin, L.; Li, H.; Gen, M. Cooperative Co-Evolution Algorithm with an MRF-Based Decomposition Strategy for Stochastic Flexible Job Shop Scheduling. Mathematics 2019, 7, 318. [Google Scholar] [CrossRef]
- Burdett, R.L.; Corry, P.; Yarlagadda, P.K.D.V.; Eustace, C.; Smith, S. A flexible job shop scheduling approach with operators for coal export terminals. Comput. Oper. Res. 2019, 104, 15–36. [Google Scholar] [CrossRef]
- Grabowski, J.; Pempera, J. Sequencing of jobs in some production system. Eur. J. Oper. Res. 2000, 125, 535–550. [Google Scholar] [CrossRef]
- Carlier, J.; Haouari, M.; Kharbeche, M.; Moukrim, A. An optimization-based heuristic for the robotic cell problem. Eur. J. Oper. Res. 2010, 202, 636–645. [Google Scholar] [CrossRef]
- Gong, H.; Tang, L.; Duin, C.W. A two-stage scheduling problem on a batching machine and a discrete machine with blocking and shared setup times. Comput. Oper. Res. 2010, 37, 960–969. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, S.; Li, X.; Xu, R. A hybrid differential evolution algorithm for a two-stage flow shop on batch processing machines with arbitrary release times and blocking. Int. J. Prod. Res. 2014, 52, 5714–5734. [Google Scholar] [CrossRef]
- Burdett, R.L.; Kozan, E. The assignment of individual renewable resources in scheduling. Asia Pac. J. Oper. Res. 2004, 21, 355–377. [Google Scholar] [CrossRef]
- Martinez, S. Ordonnancement de Systèmes de Production avec Contraintes de Blocage. Ph.D. Thesis, Université de Nantes, Nantes, France, 2005. (In French). [Google Scholar]
- Trabelsi, W.; Sauvey, C.; Sauer, N. Heuristics and metaheuristics for mixed blocking constraints flowshop scheduling problems. Comput. Oper. Res. 2012, 39, 2520–2527. [Google Scholar] [CrossRef]
- Burdett, R.L.; Kozan, E. A sequencing approach for creating new train timetables. OR Spectr. 2010, 32, 163–193. [Google Scholar] [CrossRef]
- Jain, A.S.; Meeran, S. Deterministic Job-shop scheduling: Past, present and future. Eur. J. Oper. Res. 1999, 113, 393–434. [Google Scholar] [CrossRef]
- Blazewicz, J.; Domschke, W.; Pesch, E. The job shop scheduling problem. Eur. J. Oper. Res. 1996, 93, 1–33. [Google Scholar] [CrossRef]
- Liu, S.Q.; Kozan, E. Scheduling trains as a blocking parallel-machine job shop scheduling problem. Comput. Oper. Res. 2009, 36, 2840–2852. [Google Scholar] [CrossRef]
- D’Ariano, A.; Samà, M.; D’Ariano, P.; Pacciarelli, D. Evaluating the applicability of advanced techniques for practical real-time train scheduling. Transp. Res. Procedia 2014, 3, 279–288. [Google Scholar] [CrossRef]
- Gafarov, E.; Werner, F. Two-Machine Job-Shop Scheduling with Equal Processing Times on Each Machine. Mathematics 2019, 7, 301. [Google Scholar] [CrossRef]
- Salido, M.A.; Escamilla, J.; Giret, A.; Barber, F. A genetic algorithm for energy-efficiency in job-shop scheduling. Int. J. Adv. Manuf. Technol. 2016, 85, 1303–1314. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, Q.; Tao, F.; Ni, K.; Cheng, Y. A novel search algorithm based on waterweeds reproduction principle for job shop scheduling problem. Int. J. Adv. Manuf. Technol. 2016, 84, 405–424. [Google Scholar] [CrossRef]
- Roshanaei, V.; Balagh, A.K.G.; Esfahani, M.M.S.; Vahdani, B. A mixed-integer linear programming model along with an electromagnetism-like algorithm for scheduling job shop production system with sequence-dependent set-up times. Int. J. Adv. Manuf. Technol. 2010, 47, 783–793. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, C.; Zhu, H.; Gu, J.; Deng, G. Energy-Efficient Scheduling for a Job Shop Using an Improved Whale Optimization Algorithm. Mathematics 2018, 6, 220. [Google Scholar] [CrossRef]
- Luan, F.; Cai, Z.; Wu, S.; Jiang, T.; Li, F.; Yang, J. Improved Whale Algorithm for Solving the Flexible Job Shop Scheduling Problem. Mathematics 2019, 7, 384. [Google Scholar] [CrossRef]
- Luan, F.; Cai, Z.; Wu, S.; Liu, S.; He, Y. Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm. Mathematics 2019, 7, 688. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, D.; Shen, X. A Novel Simple Particle swarm optimization Algorithm for Global Optimization. Mathematics 2018, 6, 287. [Google Scholar] [CrossRef]
- AitZai, A.; Boudhar, M. Parallel branch-and-bound and parallel PSO algorithms for job shop scheduling problem with blocking. Int. J. Oper. Res. 2013, 16, 14–37. [Google Scholar] [CrossRef]
- Xie, C.; Allen, T.T. Simulation and experimental design methods for job shop scheduling with material handling: A survey. Int. J. Adv. Manuf. Technol. 2015, 80, 233–243. [Google Scholar] [CrossRef]
- Fazlollahtabar, H.; Rezaie, B.; Kalantari, H. Mathematical programming approach to optimize material flow in an AGV-based flexible jobshop manufacturing system with performance analysis. Int. J. Adv. Manuf. Technol. 2010, 51, 1149–1158. [Google Scholar] [CrossRef]
- Woeginger, G.J. Inapproximability results for no-wait job shop scheduling. Oper. Res. Lett. 2004, 32, 320–325. [Google Scholar] [CrossRef]
- Groeflin, H.; Klinkert, A. A new neighborhood and tabu search for the blocking jobshop. Discret. Appl. Math. 2009, 157, 3643–3655. [Google Scholar] [CrossRef]
- Oddi, A.; Rasconi, R.; Cesta, A.; Smith, S. Iterative improvement algorithms for the blocking jobshop. In Proceedings of the 22nd International Conference on Automated Planning and Scheduling, Atibaia, São Paulo, Brazil, 25–19 June 2012; AAAI Press: Palo Alto, CA, USA, 2012; pp. 199–207. [Google Scholar]
- Pranzo, M. and Pacciarelli, D. An iterated greedy metaheuristic for the blocking job shop scheduling problem. J. Heuristics 2016, 22, 587–611. [Google Scholar] [CrossRef]
- Trabelsi, W.; Sauvey, C.; Sauer, N. Heuristic methods for problems with blocking constraints solving jobshop scheduling. In Proceedings of the 8th International Conference on Modelling and Simulation, Hammamet, Tunisia, 10–12 May 2010; Lavoisier: Paris, France, 2010. [Google Scholar]
- Dabah, A.; Bendjoudi, A.; AitZai, A.; Taboudjemat, N.N. Efficient parallel tabu search for the blocking job shop scheduling problem. Soft Comput. 2019, 23, 13283–13295. [Google Scholar] [CrossRef]
- Mati, Y.; Rezg, N.; Xie, X. A taboo search approach for deadlock-free scheduling of automated manufacturing systems. J. Intell. Manuf. 2001, 12, 535–552. [Google Scholar] [CrossRef]
- Bürgy, R. A neighborhood for complex job shop scheduling problems with regular objectives. J. Sched. 2017, 20, 391–422. [Google Scholar] [CrossRef]
- Lange, J.; Werner, F. On Neighborhood Structures and Repair Techniques for Blocking Job Shop Scheduling Problems. Algorithms 2019, 12, 242. [Google Scholar] [CrossRef]
- Gorine, A.; Sauvey, C.; Sauer, N. Mathematical Model and Lower Bounds for Multi Stage Job-shop Scheduling Problem with Special Blocking Constraints. In Proceedings of the 14th IFAC Symposium on Information Control Problems in Manufacturing, Bucharest, Romania, 23–25 May 2012; Borangiu, T., Dumitrache, I., Dolgui, A., Filip, F., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2012; pp. 87–92. [Google Scholar]
- Lawrence, S. Supplement to Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling Techniques; Graduate School of Industrial Administration, Carnegie-Mellon University: Pittsburgh, PA, USA, 1984. [Google Scholar]
- Holland, J.H. Outline for logical theory of adaptive systems. J. Assoc. Comput. Mach. 1962, 3, 297–314. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Piscataway, NJ, USA, 27 November–1 December 1995; University of Western Australia: Pearth, Australia, 1995; pp. 1942–1948. [Google Scholar]
- Bierwirth, C. A generalized permutation approach to job-shop scheduling with genetic algorithms. OR Spektrum 1995, 17, 87–92. [Google Scholar] [CrossRef]
- Burdett, R.L.; Kozan, E. A disjunctive graph model and framework for constructing new train schedules. Eur. J. Oper. Res. 2010, 200, 85–98. [Google Scholar] [CrossRef]
- Gonçalves, J.F.; de Magalhăes Mendes, J.J.; Resend, M.G.C. A hybrid genetic algorithm for the job shop scheduling problem. Eur. J. Oper. Res. 2005, 167, 77–95. [Google Scholar] [CrossRef]
- Sauvey, C.; Sauer, N. A genetic algorithm with genes-association recognition for flowshop scheduling problems. J. Intell. Manuf. 2012, 23, 1167–1177. [Google Scholar] [CrossRef]
- Eberhart, R.; Shi, Y. Comparison between genetic algorithms and particle swarm optimization. Lect. Notes Comput. Sci. 1998, 1447, 611–616. [Google Scholar]
- Xia, W.J.; Wu, Z.M. A hybrid particle swarm optimization approach for the jobshop scheduling problem. Int. J. Adv. Manuf. Technol. 2006, 29, 360–366. [Google Scholar] [CrossRef]
- Wong, T.C.; Ngan, S.C. A comparison of hybrid genetic algorithm and hybrid particle swarm optimization to minimize makespan for assembly job shop. Appl. Soft Comput. 2013, 13, 1391–1399. [Google Scholar] [CrossRef]
- Eftekharian, S.E.; Shojafar, M.; Shamshirband, S. 2-Phase NSGA II: An Optimized Reward and Risk Measurements Algorithm in Portfolio Optimization. Algorithms 2017, 10, 130. [Google Scholar] [CrossRef]
Jobs | Machines | Blocking Constraints | |||
---|---|---|---|---|---|
A1 | A2 | A3 | A4 | ||
5 | 5 | 0.04 | 0.03 | 0.02 | 0.04 |
10 | 5 | 67.77 | 33.78 | 47.44 | 40.37 |
10 | 10 | 1174.30 | 618.32 | 605.60 | 84.9 |
15 | 5 | >1 h | >1 h | >1 h | >1 h |
j | m | Meta-Heuristic | Parameters | A1 | A2 | A3 | A4 |
---|---|---|---|---|---|---|---|
5 | 5 | PSO | ctbvi = 10; nb_indiv = 10 | 22.7 | 9.6 | 10.4 | 21.5 |
PSO | ctbvi = 100; nb_indiv = 100 | 14.8 | 5.8 | 5.2 | 17.0 | ||
GA | ctbvi = 100; nb_indiv = 100 | 12.6 | 2.4 | 2.3 | 12.3 | ||
10 | 5 | PSO | ctbvi = 10; nb_indiv = 10 | 63.3 | 59.2 | 52.4 | 66.2 |
PSO | ctbvi = 100; nb_indiv = 100 | 49.0 | 47.6 | 40.3 | 51.6 | ||
GA | ctbvi = 100; nb_indiv = 100 | 40.8 | 33.3 | 30.8 | 22.7 |
j | m | GA (%) | GA (s) | PSO (%) | PSO (s) |
---|---|---|---|---|---|
10 | 5 | 5.91 | 0.6 | 9.47 | 2.0 |
10 | 10 | 8.24 | 1.6 | 12.88 | 6.6 |
15 | 5 | 1.28 | 1.2 | 3.17 | 4.2 |
15 | 10 | 16.59 | 3.4 | 19.90 | 16.8 |
15 | 15 | 14.56 | 8.4 | 18.71 | 39.2 |
20 | 5 | 0.31 | 2.4 | 2.54 | 6.4 |
20 | 10 | 16.06 | 8.0 | 18.91 | 26.6 |
30 | 10 | 5.60 | 13.8 | 9.26 | 77.2 |
Average: | 8.57 | 11.86 |
j | m | Blocking Matrix | Execution Time | j | m | Blocking Matrix | Execution Time | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | ||||
10 | 5 | 1512 | 1167 | 1217 | 1127 | 3 | 7 | 3 | 4 | 30 | 10 | 7792 | 5101 | 5295 | 4421 | 53 | 67 | 63 | 88 |
10 | 5 | 1503 | 1140 | 1172 | 1086 | 5 | 3 | 4 | 3 | 30 | 10 | 8204 | 5742 | 5289 | 4836 | 83 | 58 | 79 | 121 |
10 | 5 | 1278 | 1050 | 1086 | 1004 | 2 | 7 | 2 | 2 | 30 | 10 | 7814 | 5126 | 4949 | 4819 | 43 | 94 | 161 | 53 |
10 | 5 | 1212 | 1025 | 973 | 903 | 4 | 3 | 7 | 4 | 30 | 10 | 7710 | 5545 | 4842 | 4630 | 49 | 43 | 75 | 150 |
10 | 5 | 1189 | 945 | 864 | 872 | 3 | 3 | 5 | 3 | 30 | 10 | 7657 | 4700 | 5083 | 4945 | 48 | 165 | 143 | 82 |
10 | 10 | 2524 | 1679 | 1983 | 1827 | 8 | 11 | 9 | 6 | 30 | 15 | 8101 | 6097 | 5505 | 5029 | 102 | 43 | 368 | 306 |
10 | 10 | 2296 | 1722 | 1611 | 1437 | 6 | 8 | 7 | 9 | 30 | 15 | 7988 | 5291 | 5563 | 4991 | 68 | 239 | 256 | 384 |
10 | 10 | 2434 | 1569 | 1834 | 1692 | 19 | 9 | 14 | 6 | 30 | 15 | 7552 | 5767 | 5668 | 4884 | 198 | 133 | 89 | 179 |
10 | 10 | 2605 | 1819 | 1762 | 1812 | 15 | 8 | 18 | 6 | 30 | 15 | 8163 | 5336 | 5681 | 4962 | 87 | 196 | 120 | 193 |
10 | 10 | 2704 | 1689 | 1750 | 1676 | 6 | 11 | 6 | 17 | 30 | 15 | 8186 | 5486 | 5893 | 4993 | 80 | 241 | 130 | 307 |
15 | 5 | 2173 | 1718 | 1644 | 1546 | 8 | 5 | 4 | 4 | 30 | 20 | 8143 | 6261 | 5853 | 5776 | 302 | 186 | 420 | 243 |
15 | 5 | 1938 | 1527 | 1364 | 1456 | 12 | 5 | 12 | 10 | 30 | 20 | 8220 | 6060 | 6058 | 5435 | 139 | 334 | 285 | 399 |
15 | 5 | 2101 | 1649 | 1628 | 1441 | 10 | 8 | 9 | 11 | 30 | 20 | 7783 | 5917 | 6195 | 5653 | 302 | 186 | 420 | 243 |
15 | 5 | 2229 | 1772 | 1686 | 1667 | 7 | 6 | 9 | 11 | 30 | 20 | 8252 | 6063 | 6002 | 5462 | 338 | 382 | 393 | 251 |
15 | 5 | 1888 | 1741 | 1544 | 1576 | 12 | 5 | 5 | 10 | 30 | 20 | 7785 | 6017 | 6422 | 5452 | 292 | 194 | 443 | 275 |
15 | 10 | 3852 | 2548 | 2644 | 2546 | 19 | 17 | 26 | 18 | 50 | 15 | 12,195 | 10,046 | 9615 | 8598 | 359 | 560 | 523 | 469 |
15 | 10 | 3592 | 2431 | 2232 | 2487 | 20 | 14 | 18 | 15 | 50 | 15 | 12,184 | 9812 | 9094 | 8165 | 230 | 796 | 420 | 390 |
15 | 10 | 3783 | 2640 | 2779 | 2321 | 25 | 15 | 17 | 11 | 50 | 15 | 11,672 | 9767 | 8946 | 8451 | 430 | 613 | 351 | 648 |
15 | 10 | 3720 | 2471 | 2430 | 2504 | 36 | 14 | 18 | 27 | 50 | 15 | 11,977 | 9512 | 9712 | 7647 | 658 | 898 | 414 | 976 |
15 | 10 | 3749 | 2572 | 2358 | 2310 | 48 | 25 | 29 | 23 | 50 | 15 | 12,108 | 9827 | 8893 | 8116 | 545 | 251 | 653 | 832 |
15 | 15 | 5455 | 3680 | 3390 | 3508 | 31 | 31 | 36 | 29 | 50 | 20 | 13,105 | 10,386 | 10,090 | 9291 | 556 | 1935 | 829 | 741 |
15 | 15 | 6445 | 3874 | 3708 | 3911 | 32 | 32 | 16 | 44 | 50 | 20 | 12,582 | 10,737 | 9616 | 8860 | 754 | 681 | 796 | 981 |
15 | 15 | 5741 | 3019 | 3357 | 3214 | 61 | 50 | 61 | 42 | 50 | 20 | 12,705 | 9823 | 10,344 | 8852 | 747 | 1671 | 327 | 1335 |
15 | 15 | 5404 | 3525 | 3349 | 3527 | 31 | 22 | 44 | 50 | 50 | 20 | 12,579 | 10,399 | 9981 | 9312 | 902 | 717 | 714 | 981 |
15 | 15 | 5856 | 3485 | 3371 | 3761 | 21 | 42 | 35 | 47 | 50 | 20 | 13,342 | 9943 | 9914 | 8850 | 276 | 1231 | 1349 | 1452 |
20 | 5 | 2798 | 2209 | 2153 | 2134 | 12 | 15 | 11 | 10 | 100 | 20 | 22,632 | 22,363 | 20,972 | 18,108 | 5547 | 2517 | 3130 | 3251 |
20 | 5 | 2545 | 1915 | 1840 | 1785 | 8 | 15 | 21 | 15 | 100 | 20 | 23,598 | 21,479 | 20,796 | 17,913 | 3886 | 7498 | 4863 | 7111 |
20 | 5 | 2725 | 2235 | 2211 | 2115 | 8 | 13 | 15 | 16 | 100 | 20 | 23,797 | 20,866 | 20,584 | 17,482 | 3871 | 5529 | 2207 | 6603 |
20 | 5 | 2735 | 2362 | 1923 | 2086 | 14 | 11 | 14 | 14 | 100 | 20 | 23,925 | 21,273 | 20,513 | 19,538 | 4709 | 6505 | 5209 | 4375 |
20 | 5 | 2787 | 2212 | 2201 | 2303 | 12 | 14 | 9 | 13 | 100 | 20 | 24,947 | 23,354 | 21,578 | 19,088 | 3962 | 4323 | 3342 | 5823 |
20 | 10 | 5405 | 3507 | 3777 | 3462 | 23 | 29 | 17 | 25 | ||||||||||
20 | 10 | 5139 | 3610 | 3453 | 3294 | 39 | 37 | 39 | 24 | ||||||||||
20 | 10 | 5175 | 3451 | 3276 | 3599 | 33 | 40 | 47 | 31 | ||||||||||
20 | 10 | 5185 | 3477 | 3150 | 3176 | 24 | 32 | 29 | 38 | ||||||||||
20 | 10 | 5375 | 3907 | 3324 | 3564 | 22 | 21 | 27 | 19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sauvey, C.; Trabelsi, W.; Sauer, N. Mathematical Model and Evaluation Function for Conflict-Free Warranted Makespan Minimization of Mixed Blocking Constraint Job-Shop Problems. Mathematics 2020, 8, 121. https://doi.org/10.3390/math8010121
Sauvey C, Trabelsi W, Sauer N. Mathematical Model and Evaluation Function for Conflict-Free Warranted Makespan Minimization of Mixed Blocking Constraint Job-Shop Problems. Mathematics. 2020; 8(1):121. https://doi.org/10.3390/math8010121
Chicago/Turabian StyleSauvey, Christophe, Wajdi Trabelsi, and Nathalie Sauer. 2020. "Mathematical Model and Evaluation Function for Conflict-Free Warranted Makespan Minimization of Mixed Blocking Constraint Job-Shop Problems" Mathematics 8, no. 1: 121. https://doi.org/10.3390/math8010121
APA StyleSauvey, C., Trabelsi, W., & Sauer, N. (2020). Mathematical Model and Evaluation Function for Conflict-Free Warranted Makespan Minimization of Mixed Blocking Constraint Job-Shop Problems. Mathematics, 8(1), 121. https://doi.org/10.3390/math8010121