Conformal Equitorsion and Concircular Transformations in a Generalized Riemannian Space
Abstract
:1. Introduction
2. Equitorsion Conformal Transformation in Generalized Riemannian Space
3. Curvature Tensors in Equitorsion Conformal and Concircular Transformation in Generalized Riemannian Space
3.1. The First Curvature Tensor
3.2. The Second Curvature Tensor
3.3. The Third Curvature Tensor
3.4. The Fourth Curvature Tensor
3.5. The Fifth Curvature Tensor
4. Conclusions
Funding
Conflicts of Interest
References
- Eisenhart, L.P. Generalized Riemann spaces. Proc. Nat. Acad. Sci. USA 1951, 37, 311–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yano, K. Concircular Geometry I. Concircular Transformations. Proc. Imp. Acad. Tokyo 1940, 16, 195–200. [Google Scholar] [CrossRef]
- De, U.C.; Mandal, K. On K-contact Einstein Manifolds. Novi Sad J. Math. 2016, 46, 105–114. [Google Scholar] [CrossRef]
- Berezovskii, V.E.; Hinterleitner, I.; Guseva, N.I.; Mikeš, J. Conformal Mappings of Riemannian Spaces onto Ricci Symmetric Spaces. Math. Notes 2018, 103, 304–307. [Google Scholar] [CrossRef]
- Evtushik, L.E.; Hinterleitner, I.; Guseva, N.I.; Mikeš, J. Conformal mappings onto Einstein spaces. Russ. Math. 2016, 60, 5–9. [Google Scholar] [CrossRef]
- Hinterleitner, I.; Guseva, N.; Mikeš, J. On conformal mappings onto compact Einstein. Geom. Integr. Quant. 2018, 19, 132–139. [Google Scholar] [CrossRef]
- Mikesh, J. Equidistant Kahler spaces. Math. Notes 1985, 38, 855–858. [Google Scholar] [CrossRef]
- Mikeš, J.; Chodorova, M. On concircular and torse-forming vector fields on compact manifolds. Acta Math. Acad. Paedagog. Nyházi. 2010, 26, 329–335. [Google Scholar]
- Mikesh, J.; Gavril’chenko, M.L.; Gladysheva, E.I. On conformal mappings on to Einsteinian spaces. Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika 1994, 3, 13–17. [Google Scholar]
- Mikeš, J.; Hinterleitner, I.; Guseva, N. There are no conformal Einstein rescalings of pseudo-Riemannian Einstein spaces with n complete light-like geodesics. Mathematics 2019, 7, 801. [Google Scholar] [CrossRef] [Green Version]
- Shandra, I.G.; Mikeš, J. Geodesic mappings of Vn(K)-spaces and concircular vector. Mathematics 2019, 7, 692. [Google Scholar] [CrossRef] [Green Version]
- Minčić, S.M. Ricci identities in the space of non-symmetric affine connexion. Matematički Vesnik 1973, 10, 161–172. [Google Scholar]
- Minčić, S.M. New commutation formulas in the non-symmetric affine connexion space. Publ. Inst. Math. 1977, 22, 189–199. [Google Scholar]
- Minčić, S.M. Independent curvature tensors and pseudotensors of spaces with non-symmetric affine connexion. Coll. Math. Soc. János Bolyai, 31. Dif. geom., Budapest (Hungary) 1979, 445–460. [Google Scholar]
- Minčić, S.M. Frenet formulas for curves in a generalized Riemannian space. Zbor. rad. Fil. Fak (Niš) Ser. Mat. 1989, 3, 73–82. [Google Scholar]
- Minčić, S.M.; Stanković, M.S. Equitorsion geodesic mappings of generalized Riemannian Spaces. Publ. Inst. Math. 1997, 6, 97–104. [Google Scholar]
- Minčić, S.M.; Stanković, M.S.; Velimirović, L.S. Generalized Riemannian Spaces and Spaces of Non-symmetric Affine Connection; University of Niš: Niš, Serbia, 2013; ISBN 978-86-83481-90-3. [Google Scholar]
- Zlatanović, M. New projective tensors for equitorsion geodesic mappings. Math. Lett. 2012, 25, 890–897. [Google Scholar] [CrossRef] [Green Version]
- Zlatanović, M.; Hinterleitner, I.; Najdanović, M. On Equitorsion Concircular Tensors of Generalized Riemannian Spaces. Filomat 2014, 28, 464–471. [Google Scholar] [CrossRef] [Green Version]
- Petrović, M.Z. Canonical almost geodesic mappings of type 2(0, F), θ ∈ {1, 2}, between generalized parabolic Kähler manifolds. Miskolc Math. Notes 2018, 19, 469–482. [Google Scholar] [CrossRef]
- Petrović, M.Z. Special almost geodesic mappings of the second type between generalized Riemannian spaces. Bull. Malays. Math. Sci. Soc. 2019, 42, 707–727. [Google Scholar] [CrossRef]
- Petrović, M.Z.; Velimirović, L.S. Generalized Kahler spaces in Eisenhart’s sense admitting a holomorphically projective mapping. Mediterr. J. Math. 2018, 15, 150. [Google Scholar] [CrossRef]
- Petrović, M.Z.; Stanković, M.S.; Peška, P. On Conformal and Concircular Diffeomorphisms of Eisenhart’s Generalized Riemannian Spaces. Mathematics 2019, 7, 626. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velimirović, A.M. Conformal Equitorsion and Concircular Transformations in a Generalized Riemannian Space. Mathematics 2020, 8, 61. https://doi.org/10.3390/math8010061
Velimirović AM. Conformal Equitorsion and Concircular Transformations in a Generalized Riemannian Space. Mathematics. 2020; 8(1):61. https://doi.org/10.3390/math8010061
Chicago/Turabian StyleVelimirović, Ana M. 2020. "Conformal Equitorsion and Concircular Transformations in a Generalized Riemannian Space" Mathematics 8, no. 1: 61. https://doi.org/10.3390/math8010061
APA StyleVelimirović, A. M. (2020). Conformal Equitorsion and Concircular Transformations in a Generalized Riemannian Space. Mathematics, 8(1), 61. https://doi.org/10.3390/math8010061