Stability Results for Implicit Fractional Pantograph Differential Equations via ϕ-Hilfer Fractional Derivative with a Nonlocal Riemann-Liouville Fractional Integral Condition
Abstract
:1. Introduction
- If , the initial condition reduces to multi-point nonlocal condition.
- If , the initial condition coincide with the nonlocal integral condition.
2. Preliminaries
- (i)
- .
- (ii)
- .
3. Main Results
3.1. Existence Result Via Schaefer’S Fixed Point Theorem
- (A1)
- Let be a function such that for any
- (A2)
- There exist with such that
3.2. Existence Result Via Banach Contraction Principle
4. Ulam-Hyers Stabilty
- (i)
- (ii)
5. Examples
6. Conclusions
- If , the nonlocal Riemann-Liouville integral condition reduces to a nonlocal integral condition which plays an important role in computational fluid dynamics, ill-posed problems and mathematical models [62].
- If , the initial condition reduces to multi-point nonlocal condition.
- If as defined in paper [58], the function is not well-defined for some choice of . Thus, our results modify and improve the above cited remarks and can be considered as the development of the qualitative analysis of fractional differential equations. The study of Ulam-Hyers stability in the frame of -Hilfer fractional derivative with a generalized nonlocal boundary condition proposed in this paper and other coupled system will be presented in the near future.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of fractional derivatial Equations; Elsevier Science Limited: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science Publishers: Yverdon Yverdon-les-Bains, Switzerland, 1993; Volume 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Singapore, 2010. [Google Scholar]
- Furati, K.; Kassim, M.; Tata, N. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 2012, 64, 1616–1626. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.S.; de Oliveira, E.C. Hilfer–Katugampola fractional derivatives. Comput. Appl. Math. 2018, 37, 3672–3690. [Google Scholar] [CrossRef]
- Osler, T.J. The fractional derivative of a composite function. SIAM J. Math. Anal. 1970, 1, 288–293. [Google Scholar] [CrossRef]
- Gambo, Y.Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2014, 2014, 10. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 2012, 142. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. On the generalized fractional derivatives and their Caputo modification. J. Nonlinear Sci. Appl. 2017, 10, 2607–2619. [Google Scholar] [CrossRef] [Green Version]
- Marin, M.; Baleanu, D.; Vlase, S. Effect of microtemperatures for micropolar thermoelastic bodies. Struct. Eng. Mech. 2017, 61, 381–387. [Google Scholar] [CrossRef]
- Gladkov, S.; Bogdanova, S. On the question of the magnetic susceptibility of fractal ferromagnetic wires. Russ. Phys. J. 2014, 57, 469–473. [Google Scholar] [CrossRef]
- Hilfer, R. Fractional calculus and regular variation in thermodynamics. In Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000; pp. 429–463. [Google Scholar]
- Hilfer, R. Fractional time evolution. In Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000; pp. 87–130. [Google Scholar]
- Gerolymatou, E.; Vardoulakis, I.; Hilfer, R. Modelling infiltration by means of a nonlinear fractional diffusion model. J. Phys. Appl. Phys. 2006, 39, 4104. [Google Scholar] [CrossRef] [Green Version]
- Vivek, D.; Kanagarajan, K.; Sivasundaram, S. Dynamics and stability of pantograph equations via Hilfer fractional derivative. Nonlinear Stud. 2016, 23, 685–698. [Google Scholar]
- Vivek, D.; Kanagarajan, K.; Harikrishnan, S. Analytic study on nonlocal initial value problems for pantograph equations with Hilfer-Hadamard fractional derivative. Int. J. Math. Its Appl. 2018, 55, 7. [Google Scholar]
- Abdo, M.S.; Panchal, S.K.; Bhairat, S.P. Existence of solution for Hilfer fractional differential equations with boundary value conditions. arXiv 2019, arXiv:1909.13680. [Google Scholar]
- Sousa, J.V.d.C.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Ravichandran, C.; Logeswari, K.; Jarad, F. New results on existence in the framework of Atangana–Baleanu derivative for fractional integro-differential equations. Chaos Solitons Fractals 2019, 125, 194–200. [Google Scholar] [CrossRef]
- Abdo, M.S.; Panchal, S.K. Fractional integro-differential equations involving ψ-Hilfer fractional derivative. Adv. Appl. Math. Mech. 2019, 11, 1–22. [Google Scholar]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Ahmad, B.; Nieto, J.J. Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions. Bound. Value Probl. 2009, 2009, 708576. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Sivasundaram, S. Existence of solutions for impulsive integral boundary value problems of fractional order. Nonlinear Anal. Hybrid Syst. 2010, 4, 134–141. [Google Scholar] [CrossRef]
- Wang, G.; Ghanmi, A.; Horrigue, S.; Madian, S. Existence Result and Uniqueness for Some Fractional Problem. Mathematics 2019, 7, 516. [Google Scholar] [CrossRef] [Green Version]
- Ali, K.B.; Ghanmi, A.; Kefi, K. Existence of solutions for fractional differential equations with Dirichlet boundary conditions. Electron. J. Differ. Equ. 2016, 2016, 1–11. [Google Scholar]
- Nieto, J.; Ouahab, A.; Venktesh, V. Implicit fractional differential equations via the Liouville–Caputo derivative. Mathematics 2015, 3, 398–411. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, W.; Xue, T. Existence and uniqueness results for the coupled systems of implicit fractional differential equations with periodic boundary conditions. Adv. Differ. Equ. 2018, 2018, 413. [Google Scholar] [CrossRef]
- Staněk, S. Existence results for implicit fractional differential equations with nonlocal boundary conditions. Mem. Differ. Equ. Math. Phys. 2017, 72, 119–130. [Google Scholar]
- Srivastava, H. Some families of Mittag-Leffler type functions and associated operators of fractional calculus (Survey). Turk. World Math. Soc. J. Pure Appl. Math. 2016, 7, 123–145. [Google Scholar]
- Benchohra, M.; Bouriah, S.; Nieto, J.J. Existence of periodic solutions for nonlinear implicit Hadamard’s fractional differential equations. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales. Serie A Matemáticas 2018, 112, 25–35. [Google Scholar] [CrossRef]
- Srivastava, H.; El-Sayed, A.; Gaafar, F. A class of nonlinear boundary value problems for an arbitrary fractional-order differential equation with the Riemann-Stieltjes functional integral and infinite-point boundary conditions. Symmetry 2018, 10, 508. [Google Scholar] [CrossRef] [Green Version]
- Borisut, P.; Kumam, P.; Ahmed, I.; Sitthithakerngkiet, K. Nonlinear Caputo Fractional Derivative with Nonlocal Riemann-Liouville Fractional Integral Condition Via Fixed Point Theorems. Symmetry 2019, 11, 829. [Google Scholar] [CrossRef] [Green Version]
- Tomovski, Ž.; Hilfer, R.; Srivastava, H.M. Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions. Integral Transform. Spec. Funct. 2010, 21, 797–814. [Google Scholar]
- Kharade, J.P.; Kucche, K.D. On the Impulsive Implicit ψ-Hilfer Fractional Differential Equations with Delay. arXiv 2019, arXiv:1908.07793. [Google Scholar] [CrossRef] [Green Version]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222. [Google Scholar] [CrossRef] [Green Version]
- Ulam, S.M. Problems in Modern Mathematics; Courier Corporation: North Chelmsford, MA, USA, 2004. [Google Scholar]
- Ulam, S.M. A Collection of Mathematical Problems; Interscience Publishers: Geneva, Switzerland, 1960; Volume 8. [Google Scholar]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Lagreg, J.; Alsaedi, A.; Zhou, Y. Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type. Adv. Differ. Equ. 2017, 2017, 180. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lin, Z. Ulam’s type stability of Hadamard type fractional integral equations. Filomat 2014, 28, 1323–1331. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, E.C.; Sousa, J.V.d.C. Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations. Results Math. 2018, 73, 111. [Google Scholar] [CrossRef] [Green Version]
- Sousa, J.V.d.C.; Oliveira, D.d.S.; Capelas de Oliveira, E. On the existence and stability for noninstantaneous impulsive fractional integrodifferential equation. Math. Methods Appl. Sci. 2019, 42, 1249–1261. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Wang, J.; O’Regan, D. Ulam-Hyers–Mittag-Leffler stability for ψ-Hilfer fractional-order delay differential equations. Adv. Differ. Equ. 2019, 2019, 50. [Google Scholar] [CrossRef]
- Liu, K.; Fečkan, M.; O’Regan, D.; Wang, J. Hyers-Ulam Stability and Existence of Solutions for Differential Equations with Caputo-Fabrizio Fractional Derivative. Mathematics 2019, 7, 333. [Google Scholar] [CrossRef] [Green Version]
- Sousa, J.V.d.C.; de Oliveira, E.C. On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator. J. Fixed Point Theory Appl. 2018, 20, 96. [Google Scholar] [CrossRef]
- Vivek, D.; Kanagarajan, K.; Elsayed, E. Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions. Mediterr. J. Math. 2018, 15, 15. [Google Scholar] [CrossRef]
- Ahmed, H.M.; El-Borai, M.M.; El-Owaidy, H.M.; Ghanem, A.S. Impulsive Hilfer fractional differential equations. Adv. Differ. Equ. 2018, 2018, 226. [Google Scholar] [CrossRef]
- Ockendon, J.R.; Tayler, A.B. The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. Lond. Math. Phys. Sci. 1971, 322, 447–468. [Google Scholar] [CrossRef]
- Balachandran, K.; Kiruthika, S.; Trujillo, J. Existence of solutions of nonlinear fractional pantograph equations. Acta Math. Sci. 2013, 33, 712–720. [Google Scholar] [CrossRef]
- Vivek, D.; Kanagarajan, K.; Sivasundaram, S. Theory and analysis of nonlinear neutral pantograph equations via Hilfer fractional derivative. Nonlinear Stud. 2017, 24, 699–712. [Google Scholar]
- Anguraj, A.; Vinodkumar, A.; Malar, K. Existence and stability results for random impulsive fractional pantograph equations. Filomat 2016, 30, 3839–3854. [Google Scholar] [CrossRef]
- Bhalekar, S.; Patade, J. Series Solution of the Pantograph Equation and Its Properties. Fractal Fract. 2017, 1, 16. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.; Vivek, D.; Kanagarajan, K. Dynamics and Stability of ψ-fractional Pantograph Equations with Boundary Conditions. Boletim da Sociedade Paranaense de Matemática 2018, 22, 1–13. [Google Scholar]
- Elsayed, E.M.; Harikrishnan, S.; Kanagarajan, K. Analysis of nonlinear neutral pantograph differential equations with Hilfer fractional derivative. MathLAB 2018, 1, 231–240. [Google Scholar]
- Harikrishnan, S.; Ibrahim, R.; Kanagarajan, K. Establishing the existence of Hilfer fractional pantograph equations with impulses. Fundam. J. Math. Appl. 2018, 1, 36–42. [Google Scholar] [CrossRef]
- Harikrishnan, S.; Elsayed, E.; Kanagarajan, K. Existence and uniqueness results for fractional pantograph equations involving ψ-Hilfer fractional derivative. Dyn. Contin. Discret. Impuls. Syst. 2018, 25, 319–328. [Google Scholar]
- Ahmad, B.; Sivasundaram, S. Some existence results for fractional integro-differential equations with nonlinear conditions. Commun. Appl. Anal. 2008, 12, 107. [Google Scholar]
- Ntouyas, S. Nonlocal initial and boundary value problems: A survey. In Handbook of Differential Equations: Ordinary Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 2, pp. 461–557. [Google Scholar]
- Yong, Z.; Jinrong, W.; Lu, Z. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2016. [Google Scholar]
- Ciegis, R.; Bugajev, A. Numerical approximation of one model of bacterial self-organization. Nonlinear Anal. Model. Control. 2012, 17, 253–270. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, I.; Kumam, P.; Shah, K.; Borisut, P.; Sitthithakerngkiet, K.; Ahmed Demba, M. Stability Results for Implicit Fractional Pantograph Differential Equations via ϕ-Hilfer Fractional Derivative with a Nonlocal Riemann-Liouville Fractional Integral Condition. Mathematics 2020, 8, 94. https://doi.org/10.3390/math8010094
Ahmed I, Kumam P, Shah K, Borisut P, Sitthithakerngkiet K, Ahmed Demba M. Stability Results for Implicit Fractional Pantograph Differential Equations via ϕ-Hilfer Fractional Derivative with a Nonlocal Riemann-Liouville Fractional Integral Condition. Mathematics. 2020; 8(1):94. https://doi.org/10.3390/math8010094
Chicago/Turabian StyleAhmed, Idris, Poom Kumam, Kamal Shah, Piyachat Borisut, Kanokwan Sitthithakerngkiet, and Musa Ahmed Demba. 2020. "Stability Results for Implicit Fractional Pantograph Differential Equations via ϕ-Hilfer Fractional Derivative with a Nonlocal Riemann-Liouville Fractional Integral Condition" Mathematics 8, no. 1: 94. https://doi.org/10.3390/math8010094
APA StyleAhmed, I., Kumam, P., Shah, K., Borisut, P., Sitthithakerngkiet, K., & Ahmed Demba, M. (2020). Stability Results for Implicit Fractional Pantograph Differential Equations via ϕ-Hilfer Fractional Derivative with a Nonlocal Riemann-Liouville Fractional Integral Condition. Mathematics, 8(1), 94. https://doi.org/10.3390/math8010094