Polynomial Approximation on Unbounded Subsets, Markov Moment Problem and Other Applications
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- Applying the next result, Theorem 1 stated below, sometimes called Lemma of the majorizing subspace (see [3,4,5,11,12,13,14,15,16,21,22,24] for the proof or/and related applications), accompanied by polynomial approximation, to prove the existence of a positive solution Let be an ordered vector spaces for which the positive cone is generating ( Recall that in such an ordered vector space a vector subspace is called a majorizing subspace if
- (2)
- Measure theory detailed results discussed in [7].
- (3)
- Polynomial approximation on unbounded subsets, (see [4,10,11,12,13,14,15,16]) recalled and applied in Section 3. Characterizing the existence of the solution in terms of its moments and quadratic forms. Uniqueness of the solution follows too. Applying the notion of a moment-determinate measure. Establishing determinacy or indeterminacy of a measure requires special criterions (see [3,29,30]).
- (4)
- Evaluating the norm of the solution in terms of the norm of the given continuous linear functional (or operator) , under conditions (4). This goal is achieved in theorems of Section 3 as well.
3. Results
3.1. Solving Markov Moment Problem Over Unbounded Subsets via Polynomial Approximation
- (a)
- there exists a unique linear operatorsuch thatis betweenandon the positive cone ofand
- (b)
- for any finite subsetand anywe have
- (a)
- there exists a unique bounded linear operatorsuch thatis between zero andon the positive cone of
- (b)
- for any finite subset⊂and anywe have
- (a)
- there exists a unique (bounded) linear operatorsuch that,F is between zero andon the positive cone of;
- (b)
- for any finite subsetand any, we have
- (a)
- there exists a unique bounded linear operator, such that, F is between zero andon the positive cone of X,;
- (b)
- for any finite subset, and any, we have
- (a)
- there exists a unique linear bounded operatorsuch that the moment interpolation conditionsare verified and
- (b)
- for any finite subsetand anythe following implication holds true
- (c)
- for any finite subsetand anythe following relations hold
- (a)
- has a positive linear extension
- (b)
- there existssuch that
- (a)
- has a linear positive extension
- (b)
- there existssuch that for any finite subset, the following relations hold
3.2. Characterizing Positivity of Some Bounded Linear Operators
- (a)
- is nonnegative on the positive cone of.
- (b)
- for any finite subsets
4. Discussion
Funding
Conflicts of Interest
References
- Akhiezer, N.I. The Classical Moment Problem and Some Related Questions in Analysis; Oliver and Boyd: Edinburgh-London, UK, 1965. [Google Scholar]
- Krein, M.G.; Nudelman, A.A. Markov Moment Problem and Extremal Problems; American Mathematical Society: Providence, RI, USA, 1977. [Google Scholar]
- Schmüdgen, K. The Moment Problem; In Graduate Texts in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Olteanu, O. Recent Results on Markov Moment Problem, Polynomial Approximation and Related Fields in Analysis; Generis Publishing: Chisinau, Republic of Moldova, 2020. [Google Scholar]
- Cristescu, R. Ordered Vector Spaces and Linear Operators; Editura Academiei: Bucharest, Romania; Abacus Press: Tunbridge Wells, UK, 1976. [Google Scholar]
- Niculescu, C.P.; Persson, L.-E. Convex functions and their applications. A contemporary approach. In CMS Books in Mathematics, 2nd ed.; Springer: New York, NY, USA, 2018; Volume 23. [Google Scholar]
- Rudin, W. Real and Complex Analysis, 3rd ed.; McGraw-Hill Book Company: London, UK, 1987. [Google Scholar]
- Schaefer, H.H. Topological Vector Spaces, 3rd Printing Corrected; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1971. [Google Scholar] [CrossRef]
- Simons, S. From Hahn–Banach to Monotonicity, 2nd ed.; In Lecture Notes in Mathematics; Springer: New York, NY, USA, 2008. [Google Scholar]
- Mihăilă, J.M.; Olteanu, O.; Udrişte, C. Markov—Type moment problems for arbitrary compact and some noncompact Borel subsets of . Rev. Roum. Math Pures Appl. 2007, 52, 655–664. [Google Scholar]
- Olteanu, O. Approximation and Markov moment problem on concrete spaces. Rend. Circ. Mat. Palermo 2014, 63, 161–172. [Google Scholar] [CrossRef]
- Olteanu, O. Applications of Hahn-Banach principle to the moment problem. Poincare J. Anal. Appl. 2015, 1, 1–28. [Google Scholar] [CrossRef]
- Olteanu, O. Markov moment problems and related approximation. Math. Rep. 2015, 17, 107–117. [Google Scholar]
- Olteanu, O. Invariant subspaces and invariant balls of bounded linear operators. Bull. Math. Soc. Sci. Math. Roum. 2016, 59, 261–271. [Google Scholar]
- Olteanu, O.; Mihăilă, J.M. Polynomial approximation on unbounded subsets and some applications. Asian J. Sci. Technol. 2018, 9, 8875–8890. [Google Scholar]
- Olteanu, O.; Mihăilă, J.M. Markov moment problem in concrete spaces revisited. MathLAB J. 2020, 5, 82–91. [Google Scholar]
- Olteanu, O. Convexité et prolongement d’opérateurs linéaires. C. R. Acad. Sci. Paris Série A 1978, 286, 511–514. [Google Scholar]
- Olteanu, O. Théorèmes de prolongement d’opérateurs linéaires. Rev. Roum Math. Pures Appl. 1983, 28, 953–983. [Google Scholar]
- Olteanu, O. Application de théorèmes de prolongement d’opérateurs linéaires au problème des moments e à une généralization d’un théorème de Mazur-Orlicz. C. R. Acad. Sci. Paris 1991, t. 313, Série I, 739–742. [Google Scholar]
- Olteanu, O. From Hahn-Banach type theorems to the Markov moment problem, sandwich theorems and further applications. Mathematics 2020, 8, 1328. [Google Scholar] [CrossRef]
- Haviland, E.K. On the momentum problem for distributions in more than one dimension. Am. J. Math. 1936, 58, 164–168. [Google Scholar] [CrossRef]
- Kutateladze, S.S. Convex operators. Russ. Math. Surv. 1979, 34, 181–214. [Google Scholar] [CrossRef]
- Marshall, M. Polynomials non-negative on a strip. Proc. Am. Math. Soc. 2010, 138, 1559–1567. [Google Scholar] [CrossRef] [Green Version]
- Choquet, G. Le problème des moments. In Séminaire Choquet. Initiation à l’Analyse; Institut Henri Poincaré: Paris, France, 1962; Volume 1, 10p. [Google Scholar]
- Berg, C.; Christensen, J.P.R.; Jensen, C.U. A remark on the multidimensional moment problem. Math. Ann. 1979, 243, 163–169. [Google Scholar] [CrossRef]
- Berg, C.; Durán, A.J. The fixed point for a transformation of Hausdorff moment sequences and iteration of a rational function. Math. Scand. 2008, 103, 11–39. [Google Scholar] [CrossRef] [Green Version]
- Cassier, G. Problèmes des moments sur un compact de et décomposition des polynȏmes à plusieurs variables. J. Funct. Anal. 1984, 58, 254–266. [Google Scholar] [CrossRef] [Green Version]
- Gosse, L.; Runborg, O. Existence, uniqueness, and a constructive solution algorithm for a class of finite Markov moment problems. SIAM J. Appl. Math. 2008, 68, 1618–1640. [Google Scholar] [CrossRef] [Green Version]
- Kleiber, C.; Stoyanov, J. Multivariate distributions and the moment problem. J. Multivar. Anal. 2013, 113, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Stoyanov, J.M.; Lin, G.D.; Kopanov, P. New checkable conditions for moment determinacy of probability distributions. SIAM Theory Probab. Appl. 2020, 65, 3. (in print). Originally published in the Russian journal Teoriya Veroyatnostei i ee Primeneniya 2020, 65, 634–648. [Google Scholar] [CrossRef]
- Lemnete, L. An operator-valued moment problem. Proc. Am. Math. Soc. 1991, 112, 1023–1028. [Google Scholar] [CrossRef]
- Lemnete-Ninulescu, L.; Zlătescu, A. Some new aspects of the L.-moment problem. Rev. Roum Math. Pures Appl. 2010, 55, 197–204. [Google Scholar]
- Putinar, M. Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 1993, 42, 969–984. [Google Scholar] [CrossRef]
- Vasilescu, F.H. Spectral measures and moment problems. In Spectral Analysis and its Applications; Ion Colojoară Anniversary Volume; Theta: Bucharest, Romania, 2003; pp. 173–215. [Google Scholar]
- Norris, D.T. Optimal Solutions to the Moment Problem with Lattice Bounds. Ph.D. Thesis, University of Colorado, Denver, CO, USA, 2003. [Google Scholar]
- Olteanu, O. Mazur-Orlicz theorem in concrete spaces and inverse problems related to the moment problem. UPB Sci. Bull. Ser. A 2017, 79, 151–162. [Google Scholar]
- Niculescu, C.P.; Olteanu, O. A Note on the Isotonic Vector-Valued Convex Functions. Preprint. arXiv 2020, arXiv:2005.01088v. Available online: https://arxiv.org/abs/2005.01088 (accessed on 22 September 2020).
- Niculescu, C.P.; Olteanu, O. From the Hahn-Banach extension theorem to the isotonicity of convex functions and the majorization theory. RACSAM 2020, 114, 171, 1–19. [Google Scholar] [CrossRef]
- Montiel, López, P.; Galán, Ruiz, M. Revisiting the Hahn-Banach theorem and nonlinear infinite programming. J. Math. Anal. Appl. 2017, 455, 1037–1050. [Google Scholar] [CrossRef]
- Galán, Ruiz, M. A version of the Lax–Milgram theorem for locally convex spaces. J. Convex Anal. 2009, 16, 993–1002. [Google Scholar]
- Simons, S. The asymmetric sandwich theorem. J. Convex Anal. 2013, 20, 107–124. [Google Scholar]
- Simons, S. Bootstrapping the Mazur–Orlicz–König theorem and the Hahn–Banach–Lagrange theorem. J. Convex Anal. 2018, 25, 691–699. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olteanu, O. Polynomial Approximation on Unbounded Subsets, Markov Moment Problem and Other Applications. Mathematics 2020, 8, 1654. https://doi.org/10.3390/math8101654
Olteanu O. Polynomial Approximation on Unbounded Subsets, Markov Moment Problem and Other Applications. Mathematics. 2020; 8(10):1654. https://doi.org/10.3390/math8101654
Chicago/Turabian StyleOlteanu, Octav. 2020. "Polynomial Approximation on Unbounded Subsets, Markov Moment Problem and Other Applications" Mathematics 8, no. 10: 1654. https://doi.org/10.3390/math8101654
APA StyleOlteanu, O. (2020). Polynomial Approximation on Unbounded Subsets, Markov Moment Problem and Other Applications. Mathematics, 8(10), 1654. https://doi.org/10.3390/math8101654