On Special Spacelike Hybrid Numbers
Abstract
:1. Definitions and Preliminary Results
- if and only if
2. -Fibonacci Hybrid Numbers
3. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Özdemir, M. Introduction to hybrid numbers. Adv. Appl. Clifford Algebras 2018, 28. [Google Scholar] [CrossRef]
- Frydryszak, A.M. Dual numbers and supersymmetric mechanics. Czechoslov. J. Phys. 2005, 55, 1409–1414. [Google Scholar] [CrossRef]
- Ulrych, S. Relativistic quantum physics with hyperbolic numbers. Phys. Lett. B 2005, 625, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Bednarz, U.; Włoch, I.; Wołowiec-Musiał, M. Total graph interpretation of the numbers of the Fibonacci type. J. Appl. Math. 2015, 837917. [Google Scholar] [CrossRef] [Green Version]
- Kwaśnik, M.; Włoch, I. The total number of generalized stable sets and kernels of graphs. Ars Comb. 2000, 55, 139–146. [Google Scholar]
- Kilic, E.; Stakhov, A.P. On the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices. Chaos Solitons Fractals 2009, 40, 2210–2221. [Google Scholar] [CrossRef]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; John Wiley & Sons: New York, NY, USA; Toronto, ON, Canada, 2001. [Google Scholar]
- Liana, M.; Szynal-Liana, A.; Włoch, I. On F(p,n)-Fibonacci bicomplex numbers. Sci. Issues Jan Długosz Univ. Czȩst. Math. 2018, XXIII, 35–44. [Google Scholar] [CrossRef]
- Da Silva, R. New identities from a combinatorial approach to generalized Fibonacci and generalized Lucas numbers. Ars Comb. 2013, 137, 103–111. [Google Scholar]
- Skupień, Z. Sums of powered characteristic roots count distance-independent circular sets. Discuss. Math. Graph Theor. 2013, 33, 217–229. [Google Scholar] [CrossRef]
- Szynal-Liana, A.; Włoch, I. On F(p,n)-Fibonacci quaternions. Bull. Soc. Sci. Lett. 2018, LXVIII, 131–140. [Google Scholar]
- Włoch, A. On generalized Fibonacci numbers and k-distance Kp-matchings in graphs. Discret. Appl. Math. 2012, 160, 1399–1405. [Google Scholar] [CrossRef] [Green Version]
- Włoch, A. Some identities for the generalized Fibonacci numbers and the generalized Lucas numbers. Appl. Math. Comput. 2013, 219, 5564–5568. [Google Scholar] [CrossRef]
- Włoch, A. Some interpretations of the generalized Fibonacci numbers. AKCE Int. J. Gr. Comb. 2012, 9, 123–133. [Google Scholar]
- Włoch, I. Generalized Fibonacci polynomial of graph. Ars Comb. 2003, 68, 49–55. [Google Scholar]
- Alfuraidan, M.R.; Joudah, I.N. On a New Formula for Fibonacci’s Family m-step Numbers and Some Applications. Mathematics 2019, 7, 805. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Qi, L. Some Convolution Formulae Related to the Second-Order Linear Recurrence Sequence. Symmetry 2019, 11, 788. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lv, X. Some New Identities of Second Order Linear Recurrence Sequences. Symmetry 2019, 11, 1496. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Zhang, W. Some Identities Involving Fibonacci Polynomials and Fibonacci Numbers. Mathematics 2018, 6, 334. [Google Scholar] [CrossRef] [Green Version]
- Wagner, S.; Gutman, I. Maxima and Minima of the Hosoya Index and the Merrifield-Simmons Index. Acta Appl. Math. 2010, 112, 323–346. [Google Scholar] [CrossRef]
- Kızılateş, C. A new generalization of Fibonacci hybrid and Lucas hybrid numbers. Chaos Solitons Fractals 2020, 130, 109449. [Google Scholar] [CrossRef]
- Szynal-Liana, A.; Włoch, I. Introduction to Fibonacci and Lucas hybrinomials. Complex Var. Elliptic Equ. 2020, 65, 1736–1747. [Google Scholar] [CrossRef]
- Szynal-Liana, A.; Włoch, I. The Fibonacci hybrid numbers. Util. Math. 2019, 110, 3–10. [Google Scholar]
- Horadam, A.F. Basic properties of a certain generalized sequence of numbers. Fibonacci Q. 1965, 3, 161–176. [Google Scholar]
- Szynal-Liana, A. The Horadam hybrid numbers. Discuss. Math. Gen. Algebra Appl. 2018, 38, 91–98. [Google Scholar] [CrossRef]
· | i | h | |
---|---|---|---|
0 | |||
1 |
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | |
1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | 144 | |
1 | 1 | 1 | 2 | 3 | 4 | 6 | 9 | 13 | 19 | 28 | |
1 | 2 | 3 | 4 | 6 | 9 | 13 | 19 | 28 | 41 | 60 | |
1 | 2 | 3 | 4 | 5 | 7 | 10 | 14 | 19 | 26 | 36 | |
1 | 2 | 3 | 4 | 5 | 6 | 8 | 11 | 15 | 20 | 26 | |
2 | 1 | 3 | 4 | 7 | 11 | 18 | 29 | 47 | 76 | 123 | |
1 | 2 | 3 | 4 | 7 | 11 | 18 | 29 | 47 | 76 | 123 | |
1 | 2 | 3 | 4 | 5 | 6 | 10 | 15 | 21 | 31 | 46 | |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 13 | 19 | 26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szynal-Liana, A.; Włoch, I. On Special Spacelike Hybrid Numbers. Mathematics 2020, 8, 1671. https://doi.org/10.3390/math8101671
Szynal-Liana A, Włoch I. On Special Spacelike Hybrid Numbers. Mathematics. 2020; 8(10):1671. https://doi.org/10.3390/math8101671
Chicago/Turabian StyleSzynal-Liana, Anetta, and Iwona Włoch. 2020. "On Special Spacelike Hybrid Numbers" Mathematics 8, no. 10: 1671. https://doi.org/10.3390/math8101671
APA StyleSzynal-Liana, A., & Włoch, I. (2020). On Special Spacelike Hybrid Numbers. Mathematics, 8(10), 1671. https://doi.org/10.3390/math8101671