Theoretical Analysis (Convergence and Stability) of a Difference Approximation for Multiterm Time Fractional Convection Diffusion-Wave Equations with Delay
Abstract
:1. Introduction
- Assume that ,
- The partial derivatives and are continuous in the -neighborhood of the solution. Define
2. A Compact Difference Scheme
2.1. Super-Convergence Scheme
2.2. Compact Difference Scheme Construction
3. The Stability and Convergence of the Constructed Difference Schemes
4. Almost Unconditional Stability
5. Generalized Scheme for the Distributed Order Case
6. Numerical Illustration
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Sun, Z.Z.; Wu, X. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56, 193–209. [Google Scholar] [CrossRef]
- Alikhanov, A. A new difference scheme for the fractional diffusion equation. J. Comput. Phys. 2015, 280, 424–438. [Google Scholar] [CrossRef] [Green Version]
- Gafiychuk, V.; Datsko, B.Y. Pattern formation in a fractional reaction–diffusion system. Phys. A Stat. Mech. Appl. 2006, 365, 300–306. [Google Scholar] [CrossRef]
- Tomovski, Ž.; Hilfer, R.; Srivastava, H. Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions. Integral Transform. Spec. Funct. 2010, 21, 797–814. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, L.; Wu, Y. Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction–diffusion equations with delay. Comput. Math. Appl. 2019, 78, 1811–1818. [Google Scholar] [CrossRef]
- Hendy, A.S.; De Staelen, R.H.; Pimenov, V.G. A semi-linear delayed diffusion-wave system with distributed order in time. Numer. Algorithms 2018, 77, 885–903. [Google Scholar] [CrossRef]
- Gao, G.H.; Alikhanov, A.A.; Sun, Z.Z. The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations. J. Sci. Comput. 2017, 73, 93–121. [Google Scholar] [CrossRef]
- Sun, Z.Z. An unconditionally stable and O (τ2 + h4) order L∞ convergent difference scheme for linear parabolic equations with variable coefficients. Numer. Methods Partial Differ. Equ. Int. J. 2001, 17, 619–631. [Google Scholar] [CrossRef]
- Pimenov, V.G.; Hendy, A.S.; De Staelen, R.H. On a class of non-linear delay distributed order fractional diffusion equations. J. Comput. Appl. Math. 2017, 318, 433–443. [Google Scholar] [CrossRef]
- Hendy, A.S.; Macías-Díaz, J. A novel discrete Gronwall inequality in the analysis of difference schemes for time-fractional multi-delayed diffusion equations. Commun. Nonlinear Sci. Numer. Simul. 2019, 73, 110–119. [Google Scholar] [CrossRef]
- Li, L.; Zhou, B.; Chen, X.; Wang, Z. Convergence and stability of compact finite difference method for nonlinear time fractional reaction–diffusion equations with delay. Appl. Math. Comput. 2018, 337, 144–152. [Google Scholar] [CrossRef]
- Hendy, A.S.; Pimenov, V.G.; Macías-Díaz, J.E. Convergence and stability estimates in difference setting for time-fractional parabolic equations with functional delay. Numer. Methods Partial Differ. Equ. 2020, 36, 118–132. [Google Scholar] [CrossRef]
- Bhrawy, A.; Zaky, M. Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations. Nonlinear Dyn. 2017, 89, 1415–1432. [Google Scholar] [CrossRef]
- Hendy, A.S.; Zaky, M.A. Global consistency analysis of L1-Galerkin spectral schemes for coupled nonlinear space-time fractional Schrödinger equations. Appl. Numer. Math. 2020, 156, 276–302. [Google Scholar] [CrossRef]
- Zaky, M.; Doha, E.; Tenreiro Machado, J. A spectral numerical method for solving distributed-order fractional initial value problems. J. Comput. Nonlinear Dyn. 2018, 13, 101007. [Google Scholar] [CrossRef]
- Zaky, M.A.; Machado, J.T. Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations. Comput. Math. Appl. 2020, 79, 476–488. [Google Scholar] [CrossRef]
- Zheng, R.; Liu, F.; Jiang, X.; Turner, I.W. Finite difference/spectral methods for the two-dimensional distributed-order time-fractional cable equation. Comput. Math. Appl. 2020, 80, 1523–1537. [Google Scholar] [CrossRef]
- Zhang, Q.; Ren, Y.; Lin, X.; Xu, Y. Uniform convergence of compact and BDF methods for the space fractional semilinear delay reaction–diffusion equations. Appl. Math. Comput. 2019, 358, 91–110. [Google Scholar] [CrossRef]
- Çelik, C.; Duman, M. Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 2012, 231, 1743–1750. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, Z.Z.; Hao, Z.P. A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrodinger equation. SIAM J. Sci. Comput. 2014, 36, A2865–A2886. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, L.; Zhang, C. Compact scheme for fractional diffusion-wave equation with spatial variable coefficient and delays. Appl. Anal. 2020, 1–22. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, C. A new linearized compact multisplitting scheme for the nonlinear convection–reaction– diffusion equations with delay. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 3278–3288. [Google Scholar] [CrossRef]
- Sun, H.; Sun, Z.Z.; Gao, G.H. Some temporal second order difference schemes for fractional wave equations. Numer. Methods Partial Differ. Equ. 2016, 32, 970–1001. [Google Scholar] [CrossRef]
- Gao, G.H.; Sun, Z.Z. A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 2011, 230, 586–595. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, Z.Z. Compact Crank–Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 2015, 62, 747–771. [Google Scholar] [CrossRef]
Spatial Analysis of Convergence | |||||
---|---|---|---|---|---|
− | − | ||||
− | − | ||||
Temporal Analysis of Convergence | |||||
− | − | ||||
− | − | ||||
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hendy, A.S.; De Staelen, R.H. Theoretical Analysis (Convergence and Stability) of a Difference Approximation for Multiterm Time Fractional Convection Diffusion-Wave Equations with Delay. Mathematics 2020, 8, 1696. https://doi.org/10.3390/math8101696
Hendy AS, De Staelen RH. Theoretical Analysis (Convergence and Stability) of a Difference Approximation for Multiterm Time Fractional Convection Diffusion-Wave Equations with Delay. Mathematics. 2020; 8(10):1696. https://doi.org/10.3390/math8101696
Chicago/Turabian StyleHendy, A. S., and R. H. De Staelen. 2020. "Theoretical Analysis (Convergence and Stability) of a Difference Approximation for Multiterm Time Fractional Convection Diffusion-Wave Equations with Delay" Mathematics 8, no. 10: 1696. https://doi.org/10.3390/math8101696
APA StyleHendy, A. S., & De Staelen, R. H. (2020). Theoretical Analysis (Convergence and Stability) of a Difference Approximation for Multiterm Time Fractional Convection Diffusion-Wave Equations with Delay. Mathematics, 8(10), 1696. https://doi.org/10.3390/math8101696