Repdigits as Product of Fibonacci and Tribonacci Numbers
Abstract
:1. Introduction
2. Auxiliary Results
- i.
- ;
- ii.
- ;
- iii.
- , for all .
3. The Proof of Theorem 1
3.1. Finding an Upper Bound for n and ℓ
- .
3.2. Reducing the Bound
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A.
Appendix A.1. Tribonacci Sequence, Polynomial, and Roots
Appendix A.2. The Constants
Appendix A.3. Functions and Routines
References
- Bugeaud, Y.; Mignotte, M.; Siksek, S. Sur les nombres de Fibonacci de la forme qkyp. C. R. Math. Acad. Sci. Paris 2004, 339, 327–330. [Google Scholar] [CrossRef]
- Bugeaud, Y.; Mignotte, M.; Siksek, S. Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas powers. Ann. Math. 2006, 163, 969–1018. [Google Scholar] [CrossRef] [Green Version]
- Luca, F.; Stanica, P. Fibonacci numbers of the form pa ± pb. Congr. Numer. 2009, 194, 177–183. [Google Scholar]
- Luca, F.; Oyono, R. An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers. Proc. Jpn. Acad. Ser. A Math. Sci. 2011, 87, 45–50. [Google Scholar] [CrossRef]
- Marques, D.; Togbé, A. Fibonacci and Lucas numbers of the form 2a + 3b + 5c. Proc. Jpn. Acad. Ser. A Math. Sci. 2013, 89, 47–50. [Google Scholar] [CrossRef]
- Qu, Y.; Zeng, J.; Cao, Y. Fibonacci and Lucas numbers of the form 2a + 3b + 5c + 7d. Symmetry 2018, 10, 509. [Google Scholar] [CrossRef] [Green Version]
- Bitim, B.D. On the Diophantine equation Ln − Lm = 2 · 3a. Period. Math. Hung. 2019, 79, 210–217. [Google Scholar]
- Trojovský, P. On Diophantine equations involving Lucas sequences. Open Math. 2019, 17, 942–946. [Google Scholar] [CrossRef]
- Dujella, A.; Jadrijević, B. A parametric family of quartic Thue equations. Acta Arith. 2002, 101, 159–170. [Google Scholar] [CrossRef]
- Adegbindin, C.; Luca, F.; Togbé, A. Pell and Pell–Lucas numbers as sums of two repdigits. Bull. Malays. Math. Sci. Soc. 2020, 43, 1253–1271. [Google Scholar] [CrossRef]
- Trojovský, P. On Terms of Generalized Fibonacci Sequences which are Powers of their Indexes. Mathematics 2019, 7, 700. [Google Scholar] [CrossRef] [Green Version]
- Trojovský, P. Fibonacci numbers with a prescribed block of digits. Mathematics 2020, 8, 639. [Google Scholar] [CrossRef] [Green Version]
- Ddamulira, M. Repdigits as sums of three Padovan number. Boletín Soc. Matemática Mex. 2020, 26, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alahmadi, A.; Altassan, A.; Luca, F.; Shoaib, H. Fibonacci numbers which are concatenations of two repdigits. Quaest. Math. 2019. [Google Scholar] [CrossRef]
- Erduvan, F.; Keskin, R.; Şiar, Z. Repdigits base b as products of two Lucas numbers. Quaest. Math. 2020. [Google Scholar] [CrossRef]
- Erduvan, F.; Keskin, R. Repdigits as products of two Fibonacci or Lucas numbers. Proc. Indian Acad. Sci. (Math. Sci.) 2020, 130, 28. [Google Scholar] [CrossRef]
- Şiar, Z.; Erduvan, F.; Keskin, R. Repdigits as product of two Pell or Pell-Lucas numbers. Acta Math. Univ. Comen. 2019, 88, 247–256. [Google Scholar]
- Qu, Y.; Zeng, J. Lucas Numbers Which Are Concatenations of Two Repdigits. Mathematics 2020, 8, 1360. [Google Scholar] [CrossRef]
- Luca, F. Fibonacci and Lucas numbers with only one distinct digit. Port. Math. 2000, 57, 243–254. [Google Scholar]
- Marques, D. On the intersection of two distinct k-generalized Fibonacci sequences. Math. Bohem. 2012, 137, 403–413. [Google Scholar] [CrossRef]
- Spickerman, W.R. Binet’s formula for the recursive sequence of order k. Fibonacci Q. 1984, 22, 327–331. [Google Scholar]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Matveev, E.M. An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II. Izv. Math. 2000, 64, 1217–1269. [Google Scholar] [CrossRef]
- Waldschmidt, M. Diophantine Approximation on Linear Algebraic Groups; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2000. [Google Scholar]
- Dujella, A.; Pethő, A. A generalization of a theorem of Baker and Davenport. Q. J. Math. Oxf. Ser. 1998, 49, 291–306. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bednařík, D.; Trojovská, E. Repdigits as Product of Fibonacci and Tribonacci Numbers. Mathematics 2020, 8, 1720. https://doi.org/10.3390/math8101720
Bednařík D, Trojovská E. Repdigits as Product of Fibonacci and Tribonacci Numbers. Mathematics. 2020; 8(10):1720. https://doi.org/10.3390/math8101720
Chicago/Turabian StyleBednařík, Dušan, and Eva Trojovská. 2020. "Repdigits as Product of Fibonacci and Tribonacci Numbers" Mathematics 8, no. 10: 1720. https://doi.org/10.3390/math8101720
APA StyleBednařík, D., & Trojovská, E. (2020). Repdigits as Product of Fibonacci and Tribonacci Numbers. Mathematics, 8(10), 1720. https://doi.org/10.3390/math8101720