Next Article in Journal
Industry Risk Factors and Stock Returns of Malaysian Oil and Gas Industry: A New Look with Mean Semi-Variance Asset Pricing Framework
Next Article in Special Issue
The Solvability of a Class of Convolution Equations Associated with 2D FRFT
Previous Article in Journal
Magnetic Rotating Flow of a Hybrid Nano-Materials Ag-MoS2 and Go-MoS2 in C2H6O2-H2O Hybrid Base Fluid over an Extending Surface Involving Activation Energy: FE Simulation
Previous Article in Special Issue
p-Laplacian Equations in R + N with Critical Boundary Nonlinearity
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On the Number of Periodic Orbits to Odd Order Differential Delay Systems

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2020, 8(10), 1731; https://doi.org/10.3390/math8101731
Submission received: 14 July 2020 / Revised: 17 September 2020 / Accepted: 24 September 2020 / Published: 9 October 2020
(This article belongs to the Special Issue Modern Analysis and Partial Differential Equation)

Abstract

:
In this paper, we study the periodic orbits of a type of odd order differential delay system with 2 k 1 lags via the S 1 index theory and the variational method. This type of system has not been studied by others. Our results provide a new and more accurate method for counting the number of periodic orbits.

1. Introduction

The delay differential equations have useful applications in various fields such as age-structured population growth, life sciences, control theory, and any model involving responses with non-zero delays [1,2].
The problem of periodic solutions for multi-delay differential equations started from the research work of Kaplan and Yorke [3] in 1974. Consider the following differential delay equation
x ( t ) = i = 1 n f ( x ( t i ) )
in which f ( x ) = f ( x ) , x f ( x ) > 0 , x 0 . They proved the existence of the periodic solutions of (1) when n = 1 and n = 2 , respectively. In the subsequent literatures [4,5,6,7,8,9,10,11,12,13,14,15,16,17], the number of 2 (n + 1)-periodic solutions of Equation (1) was studied by using the results of Nussbaum [18]. In 1998, Li and He [15] made some researches for (1) by use of the theory of symmetric group. Especially, in 2006, Fei used the variational method to study the number of periodic solutions of Equation (1). He studied the cases of n = 2 k 1 and n = 2 k respectively in literature [4,5] since the specific research methods and details vary greatly. Almost at the same time, Guo and Yu [13] applied critical point theories to study the multiplicity of the 4-periodic solutions for (1) when n = 1 . After then they [12] studied the same problem for (1) when n = 2 k 1 , k 1 , which is an extension of Fei’s article [4] but the proof of theorem is more difficult and more complicated. In addition, all of these researches are about first order differential equations and did not give the precise counting method for the number of periodic solutions.
The goal of this paper is to study the periodic orbits to a type of odd order differential delay system in the form
x ( 2 m + 1 ) ( t ) = p = 1 2 k 1 F ( x ( t p ) ) , a . e . t [ 0 , 4 k ] x ( t ) x ( t 4 k ) = 0 .
where
x R N , F C 1 ( R N , R ) , F ( x ) = F ( x ) , F ( 0 ) = 0
and there are real symmetric matrices A 0 , A R N × N such that
F ( x ) = A 0 x + ( | x | ) , | x | 0 , F ( x ) = A x + ( | x | ) , | x | .
The method applied in this paper is the S 1 index theory and the variational approach [19,20,21]. The variation structure we built in this paper is simpler compared with [13]. In addition, the counting method for the number of periodic orbits in our results only depends on the eigenvalues of A and A 0 . So it is more precise and easier to examine.
To facilitate the following discussion, we suppose that
α 1 α 2 α N , β 1 β 2 β N
are respectively the eigenvalues of A 0 and A . Their corresponding unit eigenvectors are respectively u 1 , u 2 , , u N ; v 1 , v 2 , v N . At the same time, the one-dimensional space corresponding to each eigenvector is denoted as
U j = s p a n { u j } , V j = s p a n { v j } , j = 1 , 2 , , N .

2. Space X and Functional Φ

Consider the 4 k -periodic orbits of (2), and suppose
x ( t 2 k ) = x ( t ) , k 1 .
Let
X ^ = { x L 2 : x ( t 2 k ) = x ( t ) } = j = 0 ( a j cos ( 2 j + 1 ) π t 2 k + b j sin ( 2 j + 1 ) π t 2 k ) : a j , b j R N ,
X = c l j = 0 ( a j cos ( 2 j + 1 ) π t 2 k + b j sin ( 2 j + 1 ) π t 2 k ) : a j , b j R , j = 0 ( 2 j + 1 ) 2 m + 1 ( a j 2 + b j 2 ) < X ^ ,
and define P : X L 2 by
P 2 m + 1 x ( t ) = P 2 m + 1 ( j = 0 ( a j cos ( 2 j + 1 ) π t 2 k + b j sin ( 2 j + 1 ) π t 2 k ) ) = j = 0 ( 2 j + 1 ) 2 m + 1 ( a j cos ( 2 j + 1 ) π t 2 k + b j sin ( 2 j + 1 ) π t 2 k ) .
Let
P ( 2 m + 1 ) x ( t ) = j = 0 1 ( 2 j + 1 ) 2 m + 1 ( a j cos ( 2 i + 1 ) π t 2 k + b j sin ( 2 j + 1 ) π t 2 k ) .
For x X , define
x , y = 0 4 k ( P 2 m + 1 x ( t ) , y ( t ) ) d t , x = x , x ,
x , y 0 = 0 4 k ( x ( t ) , y ( t ) ) d t , x 0 = x , x 0 .
Therefore, ( X , · ) is an H m + 1 2 ( [ 0 , 4 k ] , R N ) space.
In order to facilitate subsequent calculations, we make a more detailed division as follows,
X ( j ) = { x ( t ) = a j cos ( 2 j + 1 ) π t 2 k + b j sin ( 2 j + 1 ) π t 2 k : a j , b j R N } ,
X 0 , i ( j ) = c l { x ( t ) = a j cos ( 2 j + 1 ) π t 2 k + b j sin ( 2 j + 1 ) π t 2 k : a j , b j U i } ,
X , i ( j ) = c l { x ( t ) = a j cos ( 2 j + 1 ) π t 2 k + b j sin ( 2 j + 1 ) π t 2 k : a j , b j V i } ,
then we have X ( j ) = i = 1 N X 0 , i ( j ) = i = 1 N X , i ( j ) , and let
X 0 , i = j = 0 X 0 , i ( j ) , X , i = j = 0 X , i ( j ) , X = 1 i N X 0 , i = 1 i N X , i .
It is easy to see that, x X ( j ) ,
| | x | | 2 = ( 2 j + 1 ) ( 2 m + 1 ) | | x | | 0 2 .
Then, we can get
0 4 k ( A 0 x ( t ) , x ( t ) ) d t = α i | | x | | 0 2 , x X 0 , i ( j ) X ( j ) ,
and
0 4 k ( A x ( t ) , x ( t ) ) d t = β i | | x | | 0 2 , x X , i ( j ) X ( j ) .
For the system (2), define the following functional
Φ ( x ) = 1 2 L x , x + 0 4 k F ( x ( t ) ) d t
where
L x = P ( 2 m + 1 ) j = 1 2 k 1 ( 1 ) j x ( 2 m + 1 ) ( t j ) .
If x j ( t ) = a j cos ( 2 j + 1 ) π t 2 k + b j sin ( 2 j + 1 ) π t 2 k X ( j ) , we have
L x = ( 1 ) m + 1 π 2 k 2 m + 1 j = 0 x j tan ( 2 j + 1 ) π 4 k .
Obviously L | X ( j ) : X ( j ) X ( j ) is invertible.
According to Theorem 1.4 in [21], the differential of functional Φ is
P ( 2 m + 1 ) Φ ( x ) = L x + Ψ ( x )
where Ψ ( x ) = P ( 2 m + 1 ) F ( x ) . It is easy to prove that Ψ : ( X , x 2 ) ( X , x 0 2 ) is compact.

3. Partition of Space X and Symbols

From (10), we have that if
x ( t ) = j = 0 ( a j cos ( 2 j + 1 ) π t 2 k + b j sin ( 2 j + 1 ) π t 2 k ) X ( j ) ,
then
L x , x = ( 1 ) m + 1 π 2 k 2 m + 1 ( 2 j + 1 ) 2 m + 1 tan ( 2 j + 1 ) π 4 k | | x | | 0 2 = ( 1 ) m + 1 π 2 k 2 m + 1 tan ( 2 j + 1 ) π 4 k | | x | | 2 .
Thereby, x X 0 , i ( 2 l k + j ) X ( 2 l k + j ) , j = 0 , 1 , 2 , , 2 k 1 , we have
( L + P ( 2 m + 1 ) A 0 ) x , x = ( 1 ) m + 1 π 2 k 2 m + 1 ( 4 l k + 2 j + 1 ) 2 m + 1 tan ( 2 j + 1 ) π 4 k + α i | | x | | 0 2 .
Similarly, x X , i ( 2 l k + j ) X ( 2 l k + j ) , j = 0 , 1 , 2 , , 2 k 1 , we have
( L + P ( 2 m + 1 ) A ) x , x = ( 1 ) m + 1 π 2 k 2 m + 1 ( 4 l k + 2 j + 1 ) 2 m + 1 tan ( 2 j + 1 ) π 4 k + β i | | x | | 0 2 .
Hence, define
X 0 , i + ( 2 l k + j ) = X 0 , i ( 2 l k + j ) : ( 1 ) m + 1 π 2 k 2 m + 1 ( 4 l k + 2 j + 1 ) 2 m + 1 tan ( 2 j + 1 ) π 4 k + α i > 0 , X 0 , i 0 ( 2 l k + j ) = X 0 , i ( 2 l k + j ) : ( 1 ) m + 1 ( 4 l k + 2 j + 1 ) π 2 k 2 m + 1 tan ( 2 j + 1 ) π 4 k = α i , X 0 , i ( 2 l k + j ) = X 0 , i ( 2 l k + j ) : ( 1 ) m + 1 π 2 k 2 m + 1 ( 4 l k + 2 j + 1 ) 2 m + 1 tan ( 2 j + 1 ) π 4 k + α i < 0 , X , i + ( 2 l k + j ) = X , i ( 2 l k + j ) : ( 1 ) m + 1 π 2 k 2 m + 1 ( 4 l k + 2 j + 1 ) 2 m + 1 tan ( 2 j + 1 ) π 4 k + β i > 0 , X , i 0 ( 2 l k + j ) = X , i ( 2 l k + j ) : ( 1 ) m + 1 ( 4 l k + 2 j + 1 ) π 2 k 2 m + 1 tan ( 2 j + 1 ) π 4 k = β i , X , i ( 2 l k + j ) = X , i ( 2 l k + j ) : ( 1 ) m + 1 π 2 k 2 m + 1 ( 4 l k + 2 j + 1 ) 2 m + 1 tan ( 2 j + 1 ) π 4 k + β i < 0 .
Then, we have
X , i + = j = 0 2 k 1 l = 0 X , i + ( 2 l k + j ) , X , i 0 = j = 0 2 k 1 l = 0 X , i 0 ( 2 l k + j ) , X , i = j = 0 2 k 1 l = 0 X , i ( 2 l k + j ) , X 0 , i + = j = 0 2 k 1 l = 0 X 0 , i + ( 2 l k + j ) , X , i 0 = j = 0 2 k 1 l = 0 X 0 , i 0 ( 2 l k + j ) , X 0 , i = j = 0 2 k 1 l = 0 X 0 , i ( 2 l k + j ) .
Thus,
X 0 + ( 2 l k + j ) = N i = 1 X 0 , i + , X + ( 2 l k + j ) = N i = 1 X , i + , X 0 0 ( 2 l k + j ) = N i = 1 X 0 , i 0 , X 0 ( 2 l k + j ) = N i = 1 X , i 0 , X 0 ( 2 l k + j ) = N i = 1 X 0 , i , X ( 2 l k + j ) = N i = 1 X , i .
It is easy to see that | ( 1 ) m + 1 ( 2 j + 1 ) π 2 k 2 m + 1 tan ( 2 j + 1 ) π 4 k | as j , then we can get that dim X 0 < and dim X 0 0 < .

4. Lemmas

Let X be a Hilbert space, L : X X be a linear operator, and Φ : X R be a differentiable functional.
Lemma 1.
([4], Lemma 2.4). Assume that there are two closed s 1 -invariant linear subspaces, X + and X , and r > 0 such that
(a) 
X + X is closed and of finite codimensions in X,
(b) 
L ^ ( X ) X , L ^ = L + P 1 A 0 o r L ^ = L + P 1 A ,
(c) 
there exists c 0 R such that
inf x X + Φ ( x ) c 0 ,
(d) 
there is c R such that
Φ ( x ) c < Φ ( 0 ) = 0 , x X S r = { x X : x = r } ,
(e) 
Φsatisfies ( P . S ) c -condition, c 0 < c < c , i.e., every sequence { x n } X with Φ ( x n ) c and Φ ( x n ) 0 possesses a convergent subsequence.
ThenΦhas at least 1 2 [ dim ( X + X ) codim X ( X + X ) ] generally different critical orbits in Φ 1 ( [ c 0 , c ] ) if [ dim ( X + X ) codim X ( X + X ) ] > 0 .
In addition, we make the following assumptions for convenience,
( S 1 ) f satisfies (3) and (4),
( S 2 ) [ F ( x ) 1 2 ( A x , x ) ] , | x | .
Lemma 2.
Under the assumptions of ( S 1 ) and ( S 2 ) , there exists σ > 0 such that
( L + P ( 2 m + 1 ) A ) x , x > σ x 2 , x X + a n d ( L + P ( 2 m + 1 ) A ) x , x < σ x 2 , x X .
Proof of Lemma 2.
Let Γ i : X X i , i { 1 , 2 , , N } be the orthogonal projection, then i d = i = 1 N Γ i . Assuming that x X + , then for x i = Γ i x X , i + , we can get
x i ( t ) = l = 0 j = 0 2 k 1 x , i + ( 2 l k + j ) .
Then from (12), we can get
( L + P ( 2 m + 1 ) A ) x i , x i = l = 0 j = 0 2 k 1 ( L + P ( 2 m + 1 ) A , i ) x , i + ( 2 l k + j ) , x , i + ( 2 l k + j ) = l = 0 j = 0 2 k 1 ( 1 ) m + 1 ( π 2 k ) 2 m + 1 ( 4 l k + 2 j + 1 ) 2 m + 1 tan ( 2 j + 1 ) π 4 k + β i | | x , i + ( 2 l k + j ) | | 0 2 = l = 0 j = 0 2 k 1 ( 1 ) m + 1 ( π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k + β i ( 4 l k + 2 j + 1 ) 2 m + 1 | | x , i + ( 2 l k + j ) | | 2
For convenience, let
h i , j ( l ) = ( 1 ) m + 1 ( π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k + β i ( 4 l k + 2 j + 1 ) 2 m + 1 ,
then
( L + P ( 2 m + 1 ) A ) x i , x i = l = 0 j = 0 2 k 1 h i , j ( l ) | | x , i + ( 2 l k + j ) | | 2
in which h i , j ( l ) > 0 as x i X , i + .
Furthermore, let δ = ( 1 ) m + 1 ( π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k and N i , j + = l : h i , j l > 0 . If δ < 0 , then lim l h i , j l = δ < 0 . It follows that N i , j + is a finite set and then there exists l 0 N i , j + , such that h i , j l 0 = min h i , j l : l N i , j + > 0 . In this case, let σ i , j , 1 = h i , j l 0 .
On the other hand, if δ > 0 , then there exists L > 0 , such that h i , j l > δ 2 when l > L . Therefore, l ^ N i , j + 0 , 1 , , L , such that
h i , j l ^ = min h i , j l : l N i , j + 0 , 1 , , L > 0 .
In this case, let σ i , j , 1 = min h i , j l ^ , δ 2 . Then let σ i , j , ( 1 ) = min σ i , j , ( 1 ) , σ i , j , ( 1 ) , one has h i , j ( l ) > σ i , j , ( 1 ) > 0 .
Similarly, if x i ( t ) = l = 0 j = 0 2 k 1 x , i ( 2 l k + j ) X , i , one has σ i , j , 2 > 0 , such that
h i , j ( l ) < σ i , j , ( 2 ) < 0 .
Then let σ i , j = min σ i , j , ( 1 ) , σ i , j , ( 2 ) > 0 , we can get that
( L + P ( 2 m + 1 ) A x i , x i = l = 0 j = 0 2 k 1 h i , j ( l ) | | x , i + ( 2 l k + j ) | | 2 > σ i , j l = 0 j = 0 2 k 1 | | x , i + ( 2 l k + j ) | | 2
when x i X , i + , and
( L + P ( 2 m + 1 ) A x i , x i = l = 0 j = 0 2 k 1 h i , j ( l ) | | x , i ( 2 l k + j ) | | 2 < σ i , j l = 0 j = 0 2 k 1 | | x , i ( 2 l k + j ) | | 2
when x i X , i .
Then let σ = min 0 j 2 k 1 1 i N σ i , j > 0 . The inequalities in (14) are proved. □
Lemma 3.
Under the assumptions of ( S 1 ) and ( S 2 ) , the functional Φ defined by (9) satisfies ( P . S ) -condition.
Proof of Lemma 3.
Let Γ i : X X , i be the orthogonal projections, then x n , i = Γ i x n X i , x n = i = 1 N x n , i .
Assume that { x n } X is a subsequence such that Φ ( x n ) 0 and Φ ( x n ) is bounded. Then we can get that, i { 1 , 2 , , N } , Φ ( x n , i ) 0 and Φ ( x n , i ) is bounded. Let x n , i + = x n , i X , i + , x n , i = x n , i X , i , x n , i 0 = x n , i X , i 0 . Similarly, Φ ( x n , i + ) , Φ ( x n , i ) , Φ ( x n , i 0 ) 0 when n and Φ ( x n , i + ) , Φ ( x n , i ) , Φ ( x n , i 0 ) are bounded. According to (4), we can get that
P ( 2 m + 1 ) ( F ( x n , i + ) A x n , i + ) , x n , i + < σ 2 | | x n , i + | | 2 + M ,
for some M > 0 . Thus, from
P ( 2 m + 1 ) Φ ( x n , i + ) , x n , i + = L x n + P ( 2 m + 1 ) F ( x n , i + ) , x n , i + 0 ,
and (14), we can get
P ( 2 m + 1 ) Φ ( x n , i + ) , x n , i + | ( L + P ( 2 m + 1 ) A ) x n , i + , x n , i + | | P ( 2 m + 1 ) ( F ( x n , i + ) A x n , i + ) , x n , i + | σ 2 | | x n , i + | | 2 M ,
which implies the boundedness of | | x n , i + | | . Then we can get the boundedness of | | x n + | | . Similarly, we have the boundedness of | | x n | | . At the same time, | | x n 0 | | is bounded since X n 0 is finite-dimensional. Therefore, x n is bounded. It follows from (11) that
P ( 2 m + 1 ) Φ ( x n ) = L x n + K ( x n ) .
Considering the compactness of operator K and the boundedness of x n , we can get that K ( x n ) u . Then, we have that
L x n u
as Φ ( x n ) 0 . Therefore,
x n L 1 u ,
which implies ( P . S ) -condition. □
Lemma 4.
If x is a critical point ofΦ, then the orbit corresponding to x is a periodic orbit to the system (2).
Proof of Lemma 4.
Suppose x is a critical point of Φ given by (9). Then x ( t ) should satisfy
j = 1 2 k 1 ( 1 ) j + 1 x ( 2 m + 1 ) ( t j ) + F ( x ( t ) ) = 0 , a . e . t [ 0 , 4 k ] .
Consequently,
j = 1 2 k 1 ( 1 ) j + 1 x ( 2 m + 1 ) ( t j 1 ) + F ( x ( t 1 ) ) = 0 , ( 15 a )
j = 1 2 k 1 ( 1 ) j + 1 x ( 2 m + 1 ) ( t j 2 ) + F ( x ( t 2 ) ) = 0 , ( 15 b )
j = 1 2 k 1 ( 1 ) j + 1 x ( 2 m + 1 ) ( t j 3 ) + F ( x ( t 3 ) ) = 0 , ( 15 c )
j = 0 2 k 1 ( 1 ) j + 1 x ( 2 m + 1 ) ( t j ( 2 k 1 ) ) + F ( x ( t ( 2 k 1 ) ) ) = 0 . ( 15 ( 2 k 1 ) )
Calculating (15a) + (15b) + (15c) + + ( 15 ( 2 k 1 ) ) , we have
x ( 2 m + 1 ) ( t ) + j = 1 2 k 1 F ( x ( t j ) ) = 0 , a . e . t [ 0 , 4 k ] ,
namely,
x ( 2 m + 1 ) ( t ) = j = 1 2 k 1 F ( x ( t j ) ) , a . e . t [ 0 , 4 k ] ,
hence, the orbit corresponding to x is a periodic orbit of (2). □

5. Main Results

From the definition of (13), we can get that there exists d > 0 , such that
X , i + ( 2 l k + j ) = X , i ( 2 l k + j ) , X 0 , i ( 2 l k + j ) = ϕ , X , i ( 2 l k + j ) = ϕ , X 0 , i + ( 2 l k + j ) = X 0 , i ( 2 l k + j ) ,
when l > d and ( 1 ) m + 1 tan ( 2 j + 1 ) π 4 k > 0 . Meanwhile,
X , i ( 2 l k + j ) = X , i ( 2 l k + j ) , X 0 , i + ( 2 l k + j ) = ϕ , X , i + ( 2 l k + j ) = ϕ , X 0 , i ( 2 l k + j ) = X 0 , i ( 2 l k + j ) ,
when l > d and ( 1 ) m + 1 tan ( 2 j + 1 ) π 4 k < 0 .
So,
X + ( 2 l k + j ) X 0 ( 2 l k + j ) = C X ( 2 l k + j ) ( X + ( 2 l k + j ) X 0 ( 2 l k + j ) ) = ϕ , X ( 2 l k + j ) X 0 + ( 2 l k + j ) = C X ( 2 l k + j ) ( X ( 2 l k + j ) X 0 + ( 2 l k + j ) ) = ϕ ,
when l > d . Thus, we have
X + X 0 = 2 k 1 j = 0 d l = 0 ( X + ( 2 l k + j ) X 0 ( 2 l k + j ) ) ,
X X 0 + = 2 k 1 j = 0 d l = 0 ( X ( 2 l k + j ) X 0 + ( 2 l k + j ) ) ,
C X ( X + X 0 ) = 2 k 1 j = 0 d l = 0 ( C X ( 2 l k + j ) ( X + ( 2 l k + j ) X 0 ( 2 l k + j ) ) ) ,
C X ( X X 0 + ) = 2 k 1 j = 0 d l = 0 ( C X ( 2 l k + j ) ( X ( 2 l k + j ) X 0 + ( 2 l k + j ) ) ) .
Then, we can get
dim ( X + X 0 ) < , c o d ( X X 0 + ) = dim C X ( X X 0 + ) < , dim ( X X 0 + ) < , c o d ( X + X 0 ) = dim C X ( X + X 0 ) < .
Denote
K = dim ( X + X 0 ) , K ¯ c = c o d ( X + X 0 ) , K = dim ( X X 0 + ) , K ¯ c = c o d ( X X 0 + ) .
Now we give the main results of this paper.
Theorem 1.
Suppose that ( S 1 ) and ( S 2 ) hold. Then system (2) possesses at least
n ˜ = 1 2 max { 0 , K K ¯ c , K K ¯ c }
4 k -periodic orbits satisfying x ( t 2 k ) = x ( t ) .
Proof of Theorem 1.
Suppose without loss of generality that
n ˜ = 1 2 [ K K ¯ c ] > 0 .
Firstly, it can be seen from (16) that K , K ¯ c , K and K ¯ c are finite numbers, which implies that condition (a) in Lemma 1 holds. For each i N , we have that x X ( i ) yields ( L + P ( 2 m + 1 ) A ) x X ( i ) which implies that the condition (b) in Lemma 1 holds.
Moreover, Lemma 3 gives the ( P . S ) -condition.
In the following part, we just need to show that conditions (c) and (d) in Lemma 1 hold.
Let Π i : R N W i , i = 1 , 2 , , N be the orthogonal projection. x X + = X + , let x i = Π i x X + , then x = i = 1 N x i , x i X , i + .
The second condition in (4) implies that | F ( x ) 1 2 ( A x , x ) | < 1 4 σ | x | 2 + M 1 , x R for some M 1 > 0 . Meanwhile, taking Lemma 2 into account, we can get
Φ ( x ) = 1 2 L x , x + 0 4 k F ( x ( t ) ) d t = 1 2 ( L + P ( 2 m + 1 ) A ) x , x + 0 4 k [ F ( x ( t ) ) 1 2 ( A x , x ) ] d t 1 2 σ x 2 1 4 σ x 2 4 k M 1 1 4 σ x 2 4 k M 1
if x X + . Clearly, there is c 0 R such that
inf x X + Φ ( x ) c 0 .
On the other hand,
lim | x | 0 | F ( x ) 1 2 ( A 0 x , x ) | | x | 2 = 1 2 lim | x | 0 | F ( x ) A 0 x | | x | = 0 ,
so there exists δ > 0 , such that
| F ( x ) 1 2 ( A 0 x , x ) | < σ 4 | x | 2 , 0 < | x | δ .
Thus, r > 0 , when x X , | | x | | = r , we have
| F ( x ) 1 2 ( A 0 x ( t ) , x ( t ) ) | < σ 4 | | x | | 2 .
So
Φ ( x ) = 1 2 L x , x + 0 4 k F ( x ( t ) ) d t = 1 2 ( L + P ( 2 m + 1 ) A 0 ) x , x + 0 4 k [ F ( x ( t ) ) 1 2 ( A 0 x , x ) ] d t 1 2 σ x 2 + 1 4 σ x 2 1 4 σ x 2 .
That is, there are r > 0 and c < 0 such that
Φ ( x ) c < 0 = Φ ( 0 ) , x X S r = { x X : x = r } .
Then, according to Lemma 1, Φ ( x ) has at least n ˜ different 4 k -periodic orbits satisfying x ( t 2 k ) = x ( t ) . □
Furthermore, let
n , i + ( 2 l k + j ) = 1 , ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k > β i , 0 , ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k β i , n , i ( 2 l k + j ) = 1 , ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k < β i , 0 , ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k β i , n 0 , i + ( 2 l k + j ) = 1 , ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k > α i , 0 , ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k α i , n 0 , i ( 2 l k + j ) = 1 , ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k < α i , 0 , ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k α i ,
According to the definition of (13), we have
n , i + ( 2 l k + j ) = 1 , X , i + ( 2 l k + j ) = X , i ( 2 l k + j ) , 0 , X , i + ( 2 l k + j ) = ϕ , n , i ( 2 l k + j ) = 1 , X , i ( 2 l k + j ) = X , i ( 2 l k + j ) , 0 , X , i ( 2 l k + j ) = ϕ , n 0 , i + ( 2 l k + j ) = 1 , X 0 , i + ( 2 l k + j ) = X 0 , i ( 2 l k + j ) , 0 , X 0 , i + ( 2 l k + j ) = ϕ , n 0 , i ( 2 l k + j ) = 1 , X 0 , i ( 2 l k + j ) = X 0 , i ( 2 l k + j ) , 0 , X 0 , i ( 2 l k + j ) = ϕ ,
Let
n 0 ± ( 2 l k + j ) = i = 1 N n 0 , i ± ( 2 l k + j ) , n ± ( 2 l k + j ) = i = 1 N n , i ± ( 2 l k + j ) .
Then, j { 0 , 1 , 2 , , 2 k 1 } and i { 1 , 2 , , N } ,
n , i + ( 2 l k + j ) = 1 , n 0 , i ( 2 l k + j ) = 0 , n , i ( 2 l k + j ) = 0 , n 0 , i + ( 2 l k + j ) = 1 , ( 1 ) m + 1 tan ( 2 j + 1 ) π 4 k > 0
when l > d > 0 . Therefore,
n + ( 2 l k + j ) = N , n 0 ( 2 l k + j ) = 0 , n ( 2 l k + j ) = 0 , n 0 + ( 2 l k + j ) = N , ( 1 ) m + 1 tan ( 2 j + 1 ) π 4 k > 0
when l > d .
On the other hand, X + X 0 = 2 k 1 j = 0 d l = 0 ( X + ( 2 l k + j ) X 0 ( 2 l k + j ) ) , so
dim ( X + X 0 ) c o d X ( X + X 0 ) = j = 0 2 k 1 l = 0 d [ dim X + ( 2 l k + j ) + dim X 0 ( 2 l k + j ) 2 N ] = 2 j = 0 2 k 1 l = 0 d [ n + ( 2 l k + j ) + n 0 ( 2 l k + j ) N ] .
Similarly, X X 0 + = 2 k 1 j = 0 d l = 0 ( X ( 2 l k + j ) X 0 + ( 2 l k + j ) ) , so
d i m ( X X 0 + ) c o d X ( X X 0 + ) = 2 j = 0 2 k 1 l = 0 d [ n ( 2 l k + j ) + n 0 + ( 2 l k + j ) N ] .
Hence,
K K ¯ c = dim ( X + X 0 ) c o d X ( X + X 0 ) = j = 0 2 k 1 l = 0 d [ 2 n + ( 2 l k + j ) + 2 n 0 ( 2 l k + j ) 2 N ] ,
K K ¯ c = j = 0 2 k 1 l = 0 d [ 2 n ( 2 l k + j ) + 2 n 0 + ( 2 l k + j ) 2 N ] .
However, the existence of integer d is proved only in theory in the above formulas, and the calculation method is not given, so it is difficult to calculate the specific values of K K ¯ c and K K ¯ c , causing inconvenience in practical application. So, define
d j = min { l 0 : ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k > γ m } , ( 1 ) m + 1 tan ( 2 j + 1 ) π 4 k > 0 min { l 0 : ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k < γ M } , ( 1 ) m + 1 tan ( 2 j + 1 ) π 4 k < 0
in which γ m = min { min 1 i N α i , min 1 i N β i } , γ M = max { max 1 i N α i , max 1 i N β i } .
Obviously, d j d . Then when l > d j , we can get
n + ( 2 l k + j ) = N , n 0 ( 2 l k + j ) = 0 , n ( 2 l k + j ) = 0 , n 0 + ( 2 l k + j ) = N , ( 1 ) m + 1 tan ( 2 j + 1 ) π 4 k > 0 , n + ( 2 l k + j ) = 0 , n 0 ( 2 l k + j ) = N , n ( 2 l k + j ) = N , n 0 + ( 2 l k + j ) = 0 , ( 1 ) m + 1 tan ( 2 j + 1 ) π 4 k < 0 .
Hence,
K K ¯ c = dim ( X + X 0 ) c o d ( X + X 0 ) = 2 j = 0 2 k 1 l = 0 d j [ n + ( 2 l k + j ) + n 0 ( 2 l k + j ) N ] , K K ¯ c = 2 j = 0 2 k 1 l = 0 d j [ n ( 2 l k + j ) + n 0 + ( 2 l k + j ) N ] .
This leads to the following corollary,
Corollary 1.
Suppose that ( S 1 ) and ( S 2 ) hold. Then system (2) possesses at least
n ˜ = max { 0 , j = 0 2 k 1 l = 0 d j [ n + ( 2 l k + j ) + n 0 ( 2 l k + j ) N ] , j = 0 2 k 1 l = 0 d j [ n ( 2 l k + j ) + n 0 + ( 2 l k + j ) N ] }
geometrically different 4 k -periodic orbits satisfying x ( t 2 k ) = x ( t ) .
Especially, when the system (2) can be decomposed into n systems, let
z = ( y 1 , y 2 , , y n ) , r 0 = 0 ,
and
y i ( 2 m + 1 ) ( t ) = p = 1 2 k 1 H ˜ ( y i ( t p ) ) , y i R i r i r i 1 , i = 1 , 2 , , n
in which y i = ( x r i 1 + 1 , x r i 1 + 2 , , x r i ) , H ˜ ( y i ) = y i H ( 0 , , 0 , y i , 0 , , 0 ) .
It is easy to see that (18) is a ( r i r i 1 ) -dimensional system. From (4), we can get
| H ˜ ( y i ) B 0 , i y i | = ( | y i | ) , | y i | 0 , | H ˜ ( y i ) B , i y i | = ( | y i | ) , | y i | .
Assume that
σ ( B 0 , i ) = ( α r i 1 + 1 , α r i 1 + 2 , , α r i ) , a n d σ ( B , i ) = ( β r i 1 + 1 , β r i 1 + 2 , , β r i )
are respectively the eigenvalues of B 0 , i and B , i . Their corresponding unit eigenvectors in space are respectively ( u r i 1 + 1 , u r i 1 + 2 , , u r i ) and ( v r i 1 + 1 , v r i 1 + 2 , , v r i ) .
For (18), let
X i = c l { x ( t ) = j = 0 a j cos ( 2 j + 1 ) π t 2 k + b j sin ( 2 j + 1 ) π t 2 k : a j , b j R r i r i 1 , j = 0 ( 2 j + 1 ) 2 m + 1 ( | a j | 2 + | b j | 2 ) < }
and
X i ( j ) = { a j cos ( 2 j + 1 ) π t 2 k + b j sin ( 2 j + 1 ) π t 2 k : a j , b j R r i r i 1 } ,
then
X i = j = 0 X i ( j ) = l = 0 2 k 1 j = 0 X i ( 2 l k + j ) .
Further subdivision, let
X 0 , s i ( j ) = { a j cos ( 2 j + 1 ) π t 2 k + b j sin ( 2 j + 1 ) π t 2 k : a j , b j U s } , X , s i ( j ) = { a j cos ( 2 j + 1 ) π t 2 k + b j sin ( 2 j + 1 ) π t 2 k : a j , b j V s } , X i = j = 0 r i s = r i 1 + 1 X i 0 , s ( j ) = j = 0 r i s = r i 1 + 1 X i , s ( j ) .
s { r i 1 + 1 , r i 1 + 2 , , r i } , denote
X 0 , s i , + = X i 0 , s ( 2 l k + j ) : ( 1 ) m + 1 π 2 k 2 m + 1 ( 4 l k + 2 j + 1 ) 2 m + 1 tan ( 2 j + 1 ) π 4 k + α s > 0 , X 0 , s i , 0 = X i 0 , s ( 2 l k + j ) : ( 1 ) m + 1 ( 4 l k + 2 j + 1 ) π 2 k 2 m + 1 tan ( 2 j + 1 ) π 4 k = α s , X 0 , s i , = X i 0 , s ( 2 l k + j ) : ( 1 ) m + 1 π 2 k 2 m + 1 ( 4 l k + 2 j + 1 ) 2 m + 1 tan ( 2 j + 1 ) π 4 k + α s < 0 X , s i , + = X i , s ( 2 k + j ) : ( 1 ) m + 1 π 2 k 2 m + 1 ( 4 k + 2 j + 1 ) 2 m + 1 tan ( 2 j + 1 ) π 4 k + β s > 0 , X , s i , 0 = X i , s ( 2 k + j ) : ( 1 ) m + 1 ( 4 k + 2 j + 1 ) π 2 k 2 m + 1 tan ( 2 j + 1 ) π 4 k = β s , X , s i , = X i , s ( 2 k + j ) : ( 1 ) m + 1 π 2 k 2 m + 1 ( 4 k + 2 j + 1 ) 2 m + 1 tan ( 2 j + 1 ) π 4 k + β s < 0 ,
and
X 0 i , + = r i s = r i 1 + 1 X 0 , s i , + , X 0 i , 0 = r i s = r i 1 + 1 X 0 , s i , 0 , X 0 i , = r i s = r i 1 + 1 X 0 , s i , , X i , + = r i s = r i 1 + 1 X , s i , + , X i , 0 = r i s = r i 1 + 1 X , s i , 0 , X i , = r i s = r i 1 + 1 X , s i , , K i = dim ( X i , + X 0 i , ) , K ¯ i c = c o d ( X i , + X 0 i , ) , K i = dim ( X i , X 0 i , + ) , K ¯ c = c o d ( X i , X 0 i , + ) .
Then we can get
Theorem 2.
Suppose that ( S 1 ) and ( S 2 ) hold and the differential system (2) can be decomposed into the independent systems shown in (18), then the system (2) possesses at least
n ˜ = 1 2 i = 1 n max { 0 , K i K ¯ i c , K i K ¯ i c }
geometrically different 4 k -periodic orbits satisfying x ( t 2 k ) = x ( t ) .
Proof of Theorem 2.
If the system (2) can be decomposed into n subsystems as shown in (18), according to Theorem 1, each subsystem has at least
n ˜ i = 1 2 max { 0 , K i K ¯ i c , K i K ¯ i c } , i { 1 , 2 , , n }
4 k -periodic orbits satisfying x ( t 2 k ) = x ( t ) . However, the periodic orbits of each different system represented by (18) are different and all of them are periodic orbits of (2). Therefore, the conclusion of Theorem 2 is given. □
Furthermore, when r i 1 + 1 s r i ( r 0 = 0 , r n = N ) , let
n , s i , + ( 2 l k + j ) = 1 , ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k > β s , 0 , ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k β s , n , s i , ( 2 l k + j ) = 1 , ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k < β s , 0 , ( 1 ) m + 1 ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k β s ; n 0 , s i , + ( 2 l k + j ) = 1 , ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k > α s , 0 , ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k α s , n 0 , s i , ( 2 l k + j ) = 1 , ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k < α s , 0 , ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k α s ,
n i , + ( 2 l k + j ) = s = r i 1 + 1 r i n , s i , + ( 2 l k + j ) , n i , ( 2 l k + j ) = s = r i 1 + 1 r i n , s i , ( 2 l k + j ) , n 0 i , + ( 2 l k + j ) = s = r i 1 + 1 r i n 0 , s i , + ( 2 l k + j ) , n 0 i , ( 2 l k + j ) = s = r i 1 + 1 r i n 0 , s i , ( 2 l k + j ) .
Then for j { 0 , 1 , 2 , , 2 k 1 } , i { 1 , 2 , , n } , s { r i 1 + 1 , r i 1 + 2 , , r i } , define
d j i = min { l 0 : ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k > γ m i } , ( 1 ) m + 1 tan ( 2 j + 1 ) π 4 k > 0 min { l 0 : ( 1 ) m + 1 ( ( 4 l k + 2 j + 1 ) π 2 k ) 2 m + 1 tan ( 2 j + 1 ) π 4 k < γ M i } , ( 1 ) m + 1 tan ( 2 j + 1 ) π 4 k < 0
in which γ m i = min { min r i 1 + 1 i r i α i , min r i 1 + 1 i r i β i } , γ M i = max { max r i 1 + 1 i r i α i , max r i 1 + 1 i r i β i } . Obviously, d j i d . Then when l > d j i , we have
n , s i , + ( 2 l k + j ) = 1 , n 0 , s i , ( 2 l k + j ) = 0 , n , s i , ( 2 l k + j ) = 0 , n 0 , s i , + ( 2 l k + j ) = 1 , ( 1 ) m + 1 tan ( 2 j + 1 ) π 4 k > 0 , n , s i , + ( 2 l k + j ) = 0 , n 0 , s i , ( 2 l k + j ) = 1 , n , s i , ( 2 l k + j ) = 1 , n 0 , s i , + ( 2 l k + j ) = 0 , ( 1 ) m + 1 tan ( 2 j + 1 ) π 4 k < 0 , n i , + ( 2 l k + j ) + n 0 i , ( 2 l k + j ) = r i r i 1 , n i , ( 2 l k + j ) + n 0 i , + ( 2 l k + j ) = r i r i 1 .
Hence,
K i K ¯ i c = dim ( X + X 0 ) c o d ( X + X 0 ) = j = 0 2 k 1 l = 0 d j i [ 2 n i , + ( 2 l k + j ) + 2 n 0 i , ( 2 l k + j ) 2 ( r i r i 1 ) ] K i K ¯ i c = j = 0 2 k 1 l = 0 d j i [ 2 n i , ( 2 l k + j ) + 2 n 0 i , + ( 2 l k + j ) 2 ( r i r i 1 ) ]
Combining theorem 2 with corollary 1, it is easy to get
Corollary 2.
Suppose that ( S 1 ) and ( S 2 ) hold and the differential system (2) can be decomposed into the independent systems shown in (18), then the system (2) possesses at least
n ˜ = i = 1 n max { 0 , j = 0 2 k 1 l = 0 d j i [ n i , + ( 2 l k + j ) + n 0 i , ( 2 l k + j ) ( r i r i 1 ) ] , j = 0 2 k 1 l = 0 d j i [ n i , ( 2 l k + j ) + n 0 i , + ( 2 l k + j ) ( r i r i 1 ) ] }
geometrically different 4 k -periodic orbits satisfying x ( t 2 k ) = x ( t ) .

6. Example

Example 1.
We study the multiplicity of 8-periodic orbits of the system
x ( 3 ) ( t ) = q = 1 3 F ( x ( t q ) ) , x R 4
in which
F ( x ) = ( A 0 x , x ) + ( A x , x ) i = 1 4 x i 2 2 ( 1 + i = 1 4 x i 2 ) , x = ( x 1 , x 2 , , x 4 ) A 0 = π 3 12 0 0 0 0 10 0 0 0 0 33 2 0 0 2 36 , A = π 3 12 0 0 0 0 15 0 0 0 0 6 2 0 0 2 9 .
In this case,
α 1 = 12 π 3 , α 2 = 10 π 3 , α 3 = 32 π 3 , α 4 = 37 π 3 ,
u 1 = ( 1 , 0 , 0 , 0 ) , u 2 = ( 0 , 1 , 0 , 0 ) , u 3 = ( 0 , 0 , 2 5 , 1 5 ) , u 4 = ( 0 , 0 , 1 5 , 2 5 ) ,
β 1 = 12 π 3 , β 2 = 15 π 3 , β 3 = 5 π 3 , β 4 = 10 π 3 ,
v 1 = ( 1 , 0 , 0 , 0 ) , v 2 = ( 0 , 1 , 0 , 0 ) , v 3 = ( 0 , 0 , 2 5 , 1 5 ) , v 4 = ( 0 , 0 , 1 5 , 2 5 ) .
Then
W 1 = s p a n { u 1 } = s p a n { v 1 } , W 2 = s p a n { u 2 } = s p a n { v 2 } , W 3 = s p a n { u 3 , u 4 } = s p a n { v 3 , v 4 } ,
and dim W 1 = dim W 2 = 1 , dim W 3 = 2 .
Let
F 1 ( x 1 ) = π 3 6 x 1 2 + 6 x 1 4 1 + x 1 2 , F 2 ( x 2 ) = π 3 10 x 2 2 + 15 x 2 4 2 ( 1 + x 2 2 ) , F 3 ( x 3 , x 4 ) = π 3 33 x 3 2 + 4 x 3 x 4 + 36 x 4 2 + ( 6 x 3 2 + 4 x 3 x 4 9 x 4 2 ) ( x 3 2 + x 4 2 ) 2 ( 1 + x 3 2 + x 4 2 ) .
Then
F 1 = π 3 12 x 1 + 36 x 1 3 1 + x 1 2 24 x 1 5 ( 1 + x 1 2 ) 2 , F 2 = π 3 10 x 1 + 40 x 1 3 1 + x 2 2 25 x 1 3 ( 1 + x 2 2 ) 2 , F 3 = π 3 33 x 3 + 2 x 4 + ( 6 x 3 + 2 x 4 ) ( x 3 2 + x 4 2 ) 1 + x 3 2 + x 4 2 + x 3 ( 6 x 3 2 + 4 x 3 x 4 9 x 4 2 ) ( 1 + x 3 2 + x 4 2 ) 2 , 2 x 3 + 36 x 4 + ( 6 x 3 + 2 x 4 ) ( x 3 2 + x 4 2 ) 1 + x 3 2 + x 4 2 x 4 ( 6 x 3 2 + 4 x 3 x 4 9 x 4 2 ) ( 1 + x 3 2 + x 4 2 ) 2 .
System (19) can be decomposed into independent systems as follows
x 1 ( 3 ) ( t ) = q = 1 3 F 1 ( x 1 ( t q ) ) , x 1 R , x 2 ( 3 ) ( t ) = q = 1 3 F 3 ( x 2 ( t q ) ) , x 2 R , ( x 3 ( 3 ) ( t ) , x 4 ( 3 ) ( t ) ) = q = 1 3 F 2 ( x 3 ( t q ) , x 4 ( t q ) ) , ( x 3 , x 4 ) R 2 .
Hence, according to corollary 2, we can get
n ˜ = max { 0 , j = 0 3 l = 0 d j 1 [ n 1 , + ( 4 l + j ) + n 0 1 , ( 4 l + j ) 1 ] , j = 0 3 l = 0 d j 1 [ n 1 , ( 4 l + j ) + n 0 1 , + ( 4 l + j ) 1 ] } + max { 0 , j = 0 3 l = 0 d j 2 [ n 2 , + ( 4 l + j ) + n 0 2 , ( 4 l + j ) 1 ] , j = 0 3 l = 0 d j 2 [ n 2 , ( 4 l + j ) + n 0 2 , + ( 4 l + j ) 1 ] } + max { 0 , j = 0 3 l = 0 d j 3 [ n 3 , + ( 4 l + j ) + n 0 3 , ( 4 l + j ) 2 ] , j = 0 3 l = 0 d j 3 [ n 3 , ( 4 l + j ) + n 0 3 , + ( 4 l + j ) 2 ] } .
In this case, m = 1 , k = 2 , ( 1 ) m + 1 = 1 , j { 0 , 1 , 2 , 3 } , then by calculating, we have
tan π 8 = 0.4142 , tan 3 π 8 = 2.4142 tan 5 π 8 = 2.4142 , tan 7 π 8 = 0.4142 . γ m 1 = 12 π 3 , γ M 1 = 12 π 3 , γ m 2 = 10 π 3 , γ M 2 = 15 π 3 , γ m 3 = 10 π 3 , γ M 3 = 37 π 3 .
d 0 1 = min { l 0 : 0.4142 ( 8 l + 1 4 ) 3 > 12 } = 2 , d 1 1 = min { l 0 : 2.4142 ( 8 l + 3 4 ) 3 > 12 } = 1 , d 2 1 = min { l 0 : 2.4142 ( 8 l + 5 4 ) 3 < 12 } = 1 , d 3 1 = min { l 0 : 0.4142 ( 8 l + 7 4 ) 3 < 12 } = 1 ,
d 0 2 = min { l 0 : 0.4142 ( 8 l + 1 4 ) 3 > 10 } = 2 , d 1 2 = min { l 0 : 2.4142 ( 8 l + 3 4 ) 3 > 10 } = 1 , d 2 2 = min { l 0 : 2.4142 ( 8 l + 5 4 ) 3 < 15 } = 1 , d 3 2 = min { l 0 : 0.4142 ( 8 l + 7 4 ) 3 < 15 } = 1 ,
d 0 3 = min { l 0 : 0.4142 ( 8 l + 1 4 ) 3 > 10 } = 2 , d 1 3 = min { l 0 : 2.4142 ( 8 l + 3 4 ) 3 > 10 } = 1 , d 2 3 = min { l 0 : 2.4142 ( 8 l + 5 4 ) 3 < 37 } = 1 , d 3 3 = min { l 0 : 0.4142 ( 8 l + 7 4 ) 3 < 37 } = 2 .
and
j = 0 , n , 1 1 , + ( 0 ) = n , 1 1 , + ( 4 ) = n , 1 1 , + ( 8 ) = 1 , n 0 , 1 1 , ( 0 ) = n 0 , 1 1 , ( 4 ) = 1 , n 0 , 1 1 , ( 8 ) = 0 , n , 2 2 , + ( 0 ) = n , 2 2 , + ( 4 ) = n , 2 2 , + ( 8 ) = 1 , n 0 , 2 2 , ( 0 ) = n 0 , 2 2 , ( 4 ) = 1 , n 0 , 2 2 , ( 8 ) = 0 n , 3 3 , + ( 0 ) = n , 3 3 , + ( 4 ) = 0 , n , 3 3 , + ( 8 ) = 1 , n 0 , 3 3 , ( 0 ) = n 0 , 3 3 , ( 4 ) = n 0 , 3 3 , ( 8 ) = 1 n , 4 3 , + ( 0 ) = n , 4 3 , + ( 4 ) = 0 , n , 4 3 , + ( 8 ) = 1 , n 0 , 4 3 , ( 0 ) = n 0 , 4 3 , ( 4 ) = n 0 , 4 3 , ( 8 ) = 0 . j = 1 , n , 1 1 , + ( 1 ) = 1 , n , 1 1 , + ( 5 ) = 1 , n 0 , 1 1 , ( 1 ) = 1 , n 0 , 1 1 , ( 5 ) = 0 , n , 2 2 , + ( 1 ) = 1 , n , 2 2 , + ( 5 ) = 1 , n 0 , 2 2 , ( 1 ) = 1 , n 0 , 2 2 , ( 5 ) = 0 , n , 3 3 , + ( 1 ) = 0 , n , 3 3 , + ( 5 ) = 1 , n 0 , 3 3 , ( 1 ) = 0 , n 0 , 3 3 , ( 5 ) = 0 , n , 4 3 , + ( 1 ) = 0 , n , 4 3 , + ( 5 ) = 1 , n 0 , 4 3 , ( 1 ) = 0 , n 0 , 4 3 , ( 5 ) = 0 . j = 2 , n , 1 1 , + ( 2 ) = 1 , n , 1 1 , + ( 6 ) = 0 , n 0 , 1 1 , ( 2 ) = 1 , n 0 , 1 1 , ( 6 ) = 1 , n , 2 2 , + ( 2 ) = 1 , n , 2 2 , + ( 6 ) = 0 , n 0 , 2 2 , ( 2 ) = 1 , n 0 , 2 2 , ( 6 ) = 1 , n , 3 3 , + ( 2 ) = n , 3 3 , + ( 6 ) = 0 , n 0 , 3 3 , ( 2 ) = 0 , n 0 , 3 3 , ( 6 ) = 1 , n , 4 3 , + ( 2 ) = n , 4 3 , + ( 6 ) = 0 , n 0 , 4 3 , ( 2 ) = 0 , n 0 , 4 3 , ( 6 ) = 1 .
j = 3 , n , 1 1 , + ( 3 ) = 1 , n , 1 1 , + ( 7 ) = 0 , n 0 , 1 1 , ( 3 ) = 1 , n 0 , 1 1 , ( 7 ) = 1 , n , 2 2 , + ( 3 ) = 1 , n , 2 2 , + ( 7 ) = 0 , n 0 , 2 2 , ( 3 ) = 1 , n 0 , 2 2 , ( 7 ) = 1 , n , 3 3 , + ( 3 ) = n , 3 3 , + ( 7 ) = n , 3 3 , + ( 10 ) = 0 , n 0 , 3 3 , ( 3 ) = n 0 , 3 3 , ( 7 ) = 0 , n 0 , 3 3 , ( 10 ) = 1 , n , 4 3 , + ( 3 ) = n , 4 3 , + ( 7 ) = n , 4 3 , + ( 10 ) = 0 , n 0 , 4 3 , ( 3 ) = n 0 , 4 3 , ( 7 ) = 0 , n 0 , 4 3 , ( 10 ) = 1 .
So, according to corollary 2, system (19) possesses at least n ˜ = 10 + 10 + 3 = 23 geometrically different 8-periodic orbits satisfying x ( t 4 ) = x ( t ) .

Author Contributions

Both authors contributed equally and significantly in writing this paper. Both authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the National Science Foundations of China grant number 11601493.

Acknowledgments

The authors thank the referees for carefully reading the manuscript and for their valuable suggestions, which have significantly improved the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kolmanovskii, V.; Myshkis, A. Introduction to the Theory and Applications of Functional Differential Equations; Kluver: Dordrecht, The Netherlands, 1999. [Google Scholar]
  2. Smith, H.L. An Introduction to Delay Differential Equations with Applications to the Life Sciences; Springer: New York, NY, USA, 2011. [Google Scholar]
  3. Kaplan, J.; Yorke, J. Ordinary differential equations which yield periodic solution of delay equations. J. Math. Anal. Appl. 1974, 48, 317–324. [Google Scholar] [CrossRef] [Green Version]
  4. Fei, G. Multiple periodic solutions of differential delay equations via Hamiltonian systems (I). Nonlinear Anal 2006, 65, 25–39. [Google Scholar] [CrossRef]
  5. Fei, G. Multiple periodic solutions of differential delay equations via Hamiltonian systems (II). Nonlinear Anal 2006, 65, 40–58. [Google Scholar] [CrossRef]
  6. Sun, Z.; Ge, W.; Li, L. Multiple periodic orbits of high-dimensional differential delay systems. Adv. Diff. Equ. 2019, 2019, 488. [Google Scholar] [CrossRef]
  7. Ge, W. Periodic solutions of the differential delay equation x(t) = −f(x(t − 1)). Acta Math. Sin. (New Ser.) 1996, 12, 113–121. [Google Scholar]
  8. Ge, W. On the existence of periodic solutions of differential delay equations with multiple lags. Acta Appl. Math. Sin. 1994, 17, 173–181. (In Chinese) [Google Scholar]
  9. Ge, W. Two existence theorems of periodic solutions for differential delay equations. Chin. Ann. Math. 1994, 15, 217–224. [Google Scholar]
  10. Ge, W. Oscillatory periodic solutions of differential delay equations with multiple lags. Chin. Sci. Bull. 1997, 42, 444–447. [Google Scholar] [CrossRef]
  11. Ge, W.; Zhang, L. Multiple periodic solutions of delay differential systems with 2k − 1 lags via variational approach. Discret. Contin. Dyn. Syst. 2016, 36, 4925–4943. [Google Scholar] [CrossRef]
  12. Guo, Z.; Yu, J. Multiple results on periodic solutions to higher dimensional differential equations with multiple delays. J. Dyn. Diff. Equ. 2011, 23, 1029–1052. [Google Scholar] [CrossRef]
  13. Guo, Z.; Yu, J. Multiplicity results for periodic solutions to delay differential equations via critical point theory. J. Differ. Equ. 2005, 218, 15–35. [Google Scholar] [CrossRef] [Green Version]
  14. Li, L.; Xue, C.; Ge, W. Periodic orbits to Kaplan-Yorke like differential delay equations with two lags of ratio. Adv. Differ. Equ. 2016, 247. [Google Scholar]
  15. Li, J.; He, X. Multiple periodic solutions of differential delay equations created by asymptotically linear Hamiltonian systems. Nonlinear Anal. Theory Methods Appl. 1998, 31, 45–54. [Google Scholar] [CrossRef]
  16. Li, L.; Sun, H.; Ge, W. Multiple Periodic Solutions of Differential Delay Equations with 2k − 1 Lags. Acta Math. Appl. Sin. Engl. Ser. 2020, 36, 390–400. [Google Scholar] [CrossRef]
  17. Li, L.; Sun, H.; Ge, W. On the Number of Periodic Solutions to Kaplan Yorke like High Order Differential Delay Equations with 2 k Lags. Int. J. Bifurc. Chaos 2019, 29, 1950196. [Google Scholar] [CrossRef]
  18. Nussbaum, R. Periodic solutions of special differential delay equations: An example in nonlinear functional analysis. Proc. R. Soc. Edingb. 1978, 81, 131–151. [Google Scholar] [CrossRef]
  19. Benci, V. On critical point theory for indefinite functionals in the presence of symmetries. Trans. Am. Math. Soc. 1982, 274, 533–572. [Google Scholar] [CrossRef]
  20. Fannio, L. Multiple periodic solutions of Hamiltonian systems with strong resonance at infinity. Discret. Cont. Dyn. Sys. 1997, 3, 251–264. [Google Scholar] [CrossRef]
  21. Mawhen, J.; Willem, M. Critical Point Theory and Hamiltonian Systems; Springer: New York, NY, USA, 1989. [Google Scholar]

Share and Cite

MDPI and ACS Style

Ge, W.; Li, L. On the Number of Periodic Orbits to Odd Order Differential Delay Systems. Mathematics 2020, 8, 1731. https://doi.org/10.3390/math8101731

AMA Style

Ge W, Li L. On the Number of Periodic Orbits to Odd Order Differential Delay Systems. Mathematics. 2020; 8(10):1731. https://doi.org/10.3390/math8101731

Chicago/Turabian Style

Ge, Weigao, and Lin Li. 2020. "On the Number of Periodic Orbits to Odd Order Differential Delay Systems" Mathematics 8, no. 10: 1731. https://doi.org/10.3390/math8101731

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop