Numerical Computation of Lightly Multi-Objective Robust Optimal Solutions by Means of Generalized Cell Mapping
Abstract
:1. Introduction
2. Background
2.1. Multi-Objective Optimization
2.2. Uncertain Multi-Objective Optimization
2.3. Cell Mapping Techniques
3. Proposed Algorithm
3.1. General Framework
Algorithm 1 GCM for Multi-objective Light Robust Optimal Solutions |
Require:F: objective function, : error, and : lower and upper bounds respectively, : cells per dimension, set of cells, number of subdivision steps Ensure: : Set of lightly robust solutions
|
3.2. Generalized Cell Mapping for Multi-Objective Optimization
Algorithm 2 Generalized Cell Mapping for Optimization |
Require:F: objective function, s: set of cells, : lower and upper bounds, N: cells per dimension Ensure:P, |
3.3. Computing Approximate Solutions with Backward Search
Algorithm 3 Computation of with backward search |
Require:P: canonical form of probability matrix, s: set of cells Ensure: approximation
|
3.4. Subdivision
Algorithm 4 Subdivision |
Require:: approximation, l: subdivision level Ensure: : new collection of cells
|
3.5. Compute the Worst Cases
Algorithm 5 Computation of worst cases |
Require:: approximation, p: probability matrix Ensure: set of worst cases
|
3.6. Compute Best Worst Cases
Algorithm 6 |
Require: population P, archive Ensure: updated archive A
|
3.7. Computational Complexity
- GCM: All cells are visited once and for each cell, the algorithm computes its neighbors. The neighbors depend on the type of vicinity that one uses. It could be n if one selects orthogonal neighbors or with the full neighborhood. Note that the number of neighbors is in general much lower than the number of cells. Thus, the complexity of GCM is ;
- BackwardSearch: In the worst case, all cells have to be visited (all cells are nearly optimal solutions). Since a breadth-first search is used, the cells are visited only once. Next, the complexity of is since in the worst case all candidate solutions are compared with the solutions in the archiver. Thus, the complexity of BackwardSearch is ;
- Computation of worst cases: In this case, the algorithm has to analyze at most cell to find their worst cases. The size of each grid is of size since their size is given by the number of neighbors. Note the as in GCM, it takes linear time to find the worst cases. Thus, the complexity of this algorithm is for ;
- : In the worst case, each candidate solution will be formed by solutions. From this follows that each dominance comparison have a complexity of . Thus, the complexity of the archiver is for .
4. Numerical Results
5. Application to Optimal Control
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Beyer, H.G.; Sendhoff, B. Robust optimization—A comprehensive survey. Comput. Methods Appl. Mech. Eng. 2007, 196, 3190–3218. [Google Scholar] [CrossRef]
- Cuate, O.; Schütze, O. Variation Rate to Maintain Diversity in Decision Space within Multi-Objective Evolutionary Algorithms. Math Comput. Appl. 2019, 24, 3. [Google Scholar]
- Ehrgott, M.; Ide, J.; Schöbel, A. Minmax robustness for multi-objective optimization problems. Eur. J. Oper. Res. 2014, 239, 17–31. [Google Scholar] [CrossRef]
- Kuroiwa, D.; Lee, G.M. On robust multiobjective optimization. Vietnam J. Math 2012, 40, 305–317. [Google Scholar]
- Doolittle, E.K.; Kerivin, H.L.; Wiecek, M.M. A robust multiobjective optimization problem with application to internet routing. In Tech. Rep. R2012-11-DKW; Clemson University Clemson: Clemson, SC, USA, 2012. [Google Scholar]
- Fliege, J.; Werner, R. Robust multiobjective optimization & applications in portfolio optimization. Eur. J. Oper. Res. 2014, 234, 422–433. [Google Scholar]
- Ide, J.; Schöbel, A. Robustness for Uncertain Multi-objective Optimization: A Survey and Analysis of Different Concepts. OR Spectr. 2016, 38, 235–271. [Google Scholar] [CrossRef]
- Liu, G.P.; Daley, S. Optimal-tuning nonlinear PID control of hydraulic systems. Control Eng. Pract. 2000, 8, 1045–1053. [Google Scholar] [CrossRef]
- Hsu, C. Cell-to-cell mapping: A method of global analysis for nonlinear systems. In Applied Mathematical Sciences; Springer: Cham, Switzerland, 1987. [Google Scholar]
- Sun, J.Q.; Xiong, F.R.; Schütze, O.; Hernández, C. Cell Mapping Methods-Algorithmic Approaches and Applications; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Zufiria, P.J.; Martínez-Marín, T. Improved Optimal Control Methods Based Upon the Adjoining Cell Mapping Technique. J. Optim. Theory Appl. 2003, 118, 657–680. [Google Scholar] [CrossRef]
- Hernández, C.; Naranjani, Y.; Sardahi, Y.; Liang, W.; Schütze, O.; Sun, J.Q. Simple cell mapping method for multi-objective optimal feedback control design. Int. J. Dyn. Control 2013, 1, 231–238. [Google Scholar] [CrossRef]
- Xiong, F.R.; Schütze, O.; Ding, Q.; Sun, J.Q. Finding zeros of nonlinear functions using the hybrid parallel cell mapping method. Commun. Nonlinear Sci. Numer. Simul. 2016, 34, 23–37. [Google Scholar] [CrossRef]
- Gyebrószki, G.; Csernák, G. Clustered Simple Cell Mapping: An extension to the Simple Cell Mapping method. Commun. Nonlinear Sci. Numer. Simul. 2017, 42, 607–622. [Google Scholar] [CrossRef] [Green Version]
- Dellnitz, M.; Hohmann, A. A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math. 1997, 75, 293–317. [Google Scholar] [CrossRef]
- Dellnitz, M.; Schütze, O.; Hestermeyer, T. Covering Pareto Sets by Multilevel Subdivision Techniques. J. Optim. Theory Appl. 2005, 124, 113–155. [Google Scholar] [CrossRef]
- Hillermeier, C. Nonlinear Multiobjective Optimization—A Generalized Homotopy Approach; Birkhäuser: Basel, Switzerland, 2001. [Google Scholar]
- Loridan, P. ϵ-Solutions in Vector Minimization Problems. J. Optim. Theory Appl. 1984, 42, 265–276. [Google Scholar] [CrossRef]
- Hernández, C.; Sun, J.Q.; Schütze, O. Computing the set of approximate solutions of a multi-objective optimization problem by means of cell mapping techniques. In EVOLVE—A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation IV; Emmerich, M., Deutz, A., Schütze, O., Bäck, T., Tantar, E., Tantar, A.A., Del Moral, P., Legrand, P., Bouvty, P., Coello Coello, C.A., Eds.; Springer: Cham, Switzerland, 2013; pp. 171–188. [Google Scholar]
- Schütze, O.; Hernandez, C.; Talbi, E.G.; Sun, J.Q.; Naranjani, Y.; Xiong, F.R. Archivers for the Representation of the Set of Approximate Solutions for MOPs. J. Heuristics 2019, 5, 71–105. [Google Scholar] [CrossRef]
- Hernández, C.I.; Schütze, O.; Sun, J.Q.; Ober-Blöbaum, S. Non-Epsilon Dominated Evolutionary Algorithm for the Set of Approximate Solutions. Math. Comput. Appl. 2020, 25, 3. [Google Scholar] [CrossRef] [Green Version]
- Schütze, O.; Hernández, C.I. Archiving Strategies for Multi-Objective Evolutionary Optimization Algorithms; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Xiong, F.R.; Qin, Z.C.; Xue, Y.; Schütze, O.Q.; Ding, J.Q.S. Multi-objective optimal design of feedback controls for dynamical systems with hybrid simple cell mapping algorithm. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 1465–1473. [Google Scholar] [CrossRef]
- Qin, Z.Q.; Xiong, F.R.; Hernández, C.; Fernandez, J.; Ding, Q.; Schütze, O.; Sun, J.Q. Multi-objective optimal design of sliding mode control with parallel simple cell mapping method. J. Vib. Control 2017, 23, 46–54. [Google Scholar] [CrossRef]
- Peitz, S.; Dellnitz, M. A Survey of Recent Trends in Multiobjective Optimal Control–Surrogate Models, Feedback Control and Objective Reduction. Math. Comput. Appl. 2018, 23, 30. [Google Scholar] [CrossRef] [Green Version]
- Alhato, B. Direct Power Control Optimization for Doubly Fed Induction Generator Based Wind Turbine Systems. Math. Comput. Appl. 2019, 24, 77. [Google Scholar] [CrossRef] [Green Version]
- Torres, L.; Jiménez-Cabas, J.; Gómez-Aguilar, J.; Pérez-Alcazar, P. A Simple Spectral Observer. Math. Comput. Appl. 2018, 23, 23. [Google Scholar] [CrossRef] [Green Version]
- Bermúdez, J.R.; López-Estrada, F.R.; Besancon, G.; Valencia-Palomo, G.; Torres, L.; Hernández, H.R. Modeling and Simulation of a Hydraulic Network for Leak Diagnosis. Math. Comput. Appl. 2018, 23, 70. [Google Scholar] [CrossRef] [Green Version]
- Hernández, C.; Schütze, O.; Sun, J.Q. Global Multi-objective Optimization by Means of Cell Mapping Techniques. In EVOLVE VII; Emmerich, M., Deutz, A., Schütze, O., Legrand, P., Tantar, E., Tantar, A.A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 25–56. [Google Scholar] [CrossRef]
- Kemeny, J.; Snell, J. Finite Markov Chains: With a New Appendix “Generalization of a Fundamental Matrix”; Undergraduate Texts in Mathematics; Springer: Cham, Switzerland, 1976. [Google Scholar]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons: Chichester, UK, 2001; ISBN 0-471-87339-X. [Google Scholar]
- Preuss, M.; Naujoks, B.; Rudolph, G. Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective Functions. In PPSN IX; Runarsson, T., Beyer, H.G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 513–522. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, G.; Naujoks, B.; Preuss, M. Capabilities of EMOA to Detect and Preserve Equivalent Pareto Subsets. In EMO 2007; Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 36–50. [Google Scholar] [CrossRef] [Green Version]
- Schaeffler, S.; Schultz, R.; Weinzierl, K. Stochastic Method for the Solution of Unconstrained Vector Optimization Problems. J. Optim. Theory Appl. 2002, 114, 209–222. [Google Scholar] [CrossRef]
- Schütze, O.; Esquivel, X.; Lara, A.; Coello Coello, C.A. Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multi-Objective Optimization. IEEE Trans. Evol. Comput. 2012, 16, 504–522. [Google Scholar] [CrossRef]
- Bogoya, J.M.; Vargas, A.; Cuate, O.; Schütze, O. A (p,q)-Averaged Hausdorff Distance for Arbitrary Measurable Sets. Math. Comput. Appl. 2018, 23, 51. [Google Scholar] [CrossRef] [Green Version]
- Bogoya, J.M.; Vargas, A.; Schütze, O. The Averaged Hausdorff Distances in Multi-Objective Optimization: A Review. Mathematics 2019, 7, 894. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.; Schütze, O.; Hernández, C.; Sun, J.Q.; Xiong, F.R. Parallel Simple Cell Mapping for Multi-objective Optimization. Eng. Optim. 2016, 48, 1845–1868. [Google Scholar] [CrossRef]
Symbol | Description |
---|---|
Pareto set | |
Set of approximate solutions | |
P | Transition probability matrix |
N | Fundamental matrix of the Markov chain |
Transition probability from cell to cell | |
Set of neighboring cells | |
Set of neighboring cells that dominate | |
Set of neighboring cells mutually nondominated | |
Set of solutionsc | |
Set of cell collection after d iterations that contains the solution set | |
Averaged Hausdorff distance with 2-norm |
Problem | N | ||
---|---|---|---|
Deb99 | |||
Two-on-one | |||
Sym-part | |||
SSW |
Problem | GCM | Random |
---|---|---|
Deb99 | 0.0015 | 0.1484 (0.0371) |
Two-on-one | 0.0124 | 0.3290 (0.1941) |
Sym-part | 0.0739 | 6.3411 (1.3068) |
SSW | 8.2199 | 11.7823 (1.0938) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández Castellanos, C.I.; Schütze, O.; Sun, J.-Q.; Morales-Luna, G.; Ober-Blöbaum, S. Numerical Computation of Lightly Multi-Objective Robust Optimal Solutions by Means of Generalized Cell Mapping. Mathematics 2020, 8, 1959. https://doi.org/10.3390/math8111959
Hernández Castellanos CI, Schütze O, Sun J-Q, Morales-Luna G, Ober-Blöbaum S. Numerical Computation of Lightly Multi-Objective Robust Optimal Solutions by Means of Generalized Cell Mapping. Mathematics. 2020; 8(11):1959. https://doi.org/10.3390/math8111959
Chicago/Turabian StyleHernández Castellanos, Carlos Ignacio, Oliver Schütze, Jian-Qiao Sun, Guillermo Morales-Luna, and Sina Ober-Blöbaum. 2020. "Numerical Computation of Lightly Multi-Objective Robust Optimal Solutions by Means of Generalized Cell Mapping" Mathematics 8, no. 11: 1959. https://doi.org/10.3390/math8111959
APA StyleHernández Castellanos, C. I., Schütze, O., Sun, J. -Q., Morales-Luna, G., & Ober-Blöbaum, S. (2020). Numerical Computation of Lightly Multi-Objective Robust Optimal Solutions by Means of Generalized Cell Mapping. Mathematics, 8(11), 1959. https://doi.org/10.3390/math8111959