Next Article in Journal
Local and Global Existence of Solution for Love Type Waves with Past History
Previous Article in Journal
Mathematical Modeling and Simulation of a Gas Emission Source Using the Network Simulation Method
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Inference for the Two Parameter Reduced Kies Distribution under Progressive Type-II Censoring

by
Mansour Shrahili
1,*,†,
Naif Alotaibi
2,†,
Devendra Kumar
3,† and
Salem A. Alyami
2,†
1
Department of Statistics and Operations Research, King Saud University, Riyadh 11451, Saudi Arabia
2
Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
3
Department of Statistics, Central University of Haryana, Mahendergarh 123029, India
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2020, 8(11), 1997; https://doi.org/10.3390/math8111997
Submission received: 8 September 2020 / Revised: 30 October 2020 / Accepted: 1 November 2020 / Published: 9 November 2020
(This article belongs to the Section Probability and Statistics)

Abstract

:
In this paper, we obtained several recurrence relations for the single and product moments under progressively Type-II right censored order statistics and then use these results to compute the means and variances of two parameter reduced Kies distribution. Besides, these moments are then utilized to derived best linear unbiased estimators of the scale and location parameters of two parameter reduced Kies distribution. The parameters of the two parameter reduced Kies distribution are estimated under progressive type-II censoring scheme. The model parameters are estimated using the maximum likelihood estimation method. Further, we explore the asymptotic confidence intervals for the model parameters. Monte Carlo simulations are performed to compare between the proposed estimation methods under progressive type-II censoring scheme. Based on our study, we can conclude that maximum likelihood estimators is decreasing with respect to an increase of the schemes and comparing the three censoring schemes, it is clear that the mean sum of squares, confidence interval lengths are smaller for scheme 1 than schemes 2 and 3.

1. Introduction

The one parameter reduced Kies (RK) distribution was introduced by Kumar and Dharmaja [1] for modeling data and a generalization of Kies distribution. The two parameter RK distribution is a flexible model which provides left-skewed, symmetrical, right-skewed, and reversed-J shaped densities (see Figure 1). Its hazard rate function (HRF) can provide decreasing, increasing, upside-down bathtub, bathtub, and reversed-J shaped hazard rates (see Figure 2). It is noted that the bathtub and modified bathtub hazard rates are very important in the reliability engineering context. John et al. [2] investigated modified-bathtub hazard rate shape is widely used in industrial and medical applications. For example, thermal stress screening is an assembly-level electronics manufacturing process that evolved from the burn-in processes used in NASA and DoD programs. While burn-in subjects the product to expected field extremes to expose infant mortalities (patent failures), thermal stress screening briefly exposes a product to fast temperature rate-of-change and out-of-spec temperatures to trigger failures that would otherwise occur during the useful life of the product. Also Xie and Lai [3], Lai et al. [4], Chakherloo et al. [5] and Al abbasi et al. [6] pointed out bathtub hazard rate shape is widely used in reliability engineering. The motivation for using this distribution here is that it has many applications in several areas of life such as accelerated life testing, survival analysis, reliability, biology, material science, engineering, physics, chemistry, economics, business administration, meteorology, hydrology, medicine, psychology and pharmacy. For a detailed account in this regard see Murthy et al. [7] or Rinne [8] and references therein. RK distribution can be viewed as a functional form of the Weibull distribution with shape parameter λ and it can be useful for modeling data sets with increasing and bathtub shaped hazard rate functions. Simple probability distributions generally do not exhibit bathtub-shaped failure rate, including Weibull, gamma, and log-normal. In most cases, bathtub shaped hazard functions have at least two parameters, whereas reduced Kies distribution has two parameter which exhibit both increasing and bathtub shaped hazard rate. In Engineering and Medical situations, Kumar and Dharmaja [1] observed that RK distribution is a better model compared to the Weibull as well as its extended models such as beta Weibull distribution, beta generalised Weibull distribution etc. in terms of hazard function is decreasing, increasing and bathtub shaped where Weibull models are inappropriate. Kumar and Dharmaja [1] studied the estimation of the parameters by using maximum likelihood estimation method of the reduced Kies distribution. Kumar and Dharmaja [9] considered the estimation of the Kies parameters under maximum likelihood estimation method. Dey et al. [10] studied the estimation of the reduced Kies parameter under progressive type-II censoring. They compared the performance of these estimators, for small and large samples, using extensive simulations. The only paper we were able to find on progressive type-II censoring of the one parameter RK distribution is Dey et al. [10]. This paper gives recurrence relations for single moments and product moments of progressive type-II censoring order statistics based on one parameter RK distribution. It did not consider two parameter RK distribution.
Let Y 1 , Y 2 , , Y n be a random variable come from a two parameter RK distribution, then its non negative probability density function (pdf) and cumulative distribution function (cdf) are given as follows:
f ( y ; λ , μ ) = λ ( y μ ) λ 1 [ 1 ( y μ ) ] λ 1 e y μ 1 ( y μ ) λ , y > μ , λ > 0
and
F ( y ; λ , μ ) = 1 e y μ 1 ( y μ ) λ , y > μ > 0 , λ > 0
Here λ is a shape parameter and μ is a location parameter. From Equations (1) and (2), we obtain
f ( y ) = λ a = 0 b = 0 λ + a 1 ( 1 ) b λ + a 1 b μ b ( λ + 1 ) a a ! y λ + a 1 b F ¯ ( y ) ,
where ( ξ ) c = ξ ( ξ + 1 ) , ⋯, ( ξ + c 1 ) denotes the ascending factorial.
In Figure 1 and Figure 2, various graphs of the pdf and the hazard rate function for the two parameter RK distribution for different parameters values. These plots show that the pdf is uni-modal, positively skewed and approximately symmetric. The plots in Figure 2 indicate that the hazard rate function for the two parameter RK distribution is very flexible. It can have increasing (IFR), decreasing (DFR), upside down bathtub (UBT) or bathtub (BT) failure rate functions.
Let the experimenter decides to carry out the life-test for a pre-fixed length of time, say T. Then the data arising from such a time-constrained life-test would be of the form Y 1 : s Y r : s with the remaining s s lifetimes being more than T; here, r is random ( 0 r s ) and has a binomial distribution with parameters ( s , F ( T ) ) . This situation is referred to as Type-I censoring. Suppose the experimenter decides to carry out the life-test until the time of the r t h failure, then the data arising from such a life-test would be of the form Y 1 : s Y r : s with the remaining s r lifetimes being more than Y r : s . This situation is referred to as Type-II censoring see Balakrishnan [11].
In life testing experiments, it is common to come across incomplete or censored data. This happens particularly when the experimenter does not observe the failure times of all units placed on the life test and this may be intentional or unintentional or may be due to time constraints or owing to the structure of a technical system. Obviously, in such a situation, the probabilistic structure of the resulting incomplete data affects the censoring mechanism and therefore suitable inferential procedures become necessary. In literature, there are various censoring schemes which include right, left and interval censoring, single or multiple censoring and type-I or type-II censoring. However, classical Type-I and Type-II censoring schemes are not flexibile as they do not allow removal of units at point other than the terminal point of the experiment. A mixture of type-I and type-II schemes is known as the hybrid censoring scheme. For this reason, we consider here a more general censoring scheme called progressive type-II censoring scheme.
If the failure times are based continuous cdf F ( y ) with pdf f ( y ) , the joint pdf of the progressively censored failure times Y 1 : r : s , Y 2 : r : s , ⋯, Y r : r : s , is given by Balakrishnan and Aggarwala [12].
f Y 1 : r : s , Y 2 : r : s , , Y r : r : s ( y 1 , y 2 , , y r ) = Δ ( s , r 1 ) i = 1 r f ( y i ) [ 1 F ( y i ) ] T i , < y 1 < y 2 < < y r < ,
where
Δ ( s , r 1 ) = s ( s T 1 1 ) ( s T 1 T 2 T r 1 r + 1 ) ,
with Δ ( s , 0 ) = s . Here T is the progressive censoring scheme, T 1 , T 2 , , T r are numbers which are prefixed, s is the number of units we put on the life testing experiment and r is the predetermined number of failures at which experiment will be terminated.
Let y 1 , y 2 , ⋯, y s be a random sample of size s from the two parameter RK distribution with pdf and cdf given in (1) and (2) respectively. The corresponding progressive Type-II right censored order statistics with censoring scheme ( T 1 , T 2 , T r ) , r s will be
Y 1 : r : s ( T 1 , T 2 , , T r ) , Y 2 : r : s ( T 1 , T 2 , , T r ) , , Y r : r : s ( T 1 , T 2 , , T r ) .
Let us define the single moments of the progressive Type-II right censored order statistics
α i : r : s ( T 1 , T 2 , , T r ) ( k ) = E Y i : r : s ( T 1 , T 2 , , T r ) ( k ) = Δ ( s , r 1 ) 0 < y 1 < y 2 < < y r < y i k f ( y 1 ) × [ 1 F ( y 1 ) ] T 1 f ( y 2 ) [ 1 F ( y 2 ) ] T 2 f ( y 3 ) [ 1 F ( y 3 ) ] T 3 f ( y r ) × [ 1 F ( y r ) ] T r d y 1 d y 2 d y 3 d y r ,
In the last few decades, researchers have focused their attention to recurrence relation for moments of progressive type-II censoring. Many researchers considered moments of progressive type-II censoring in their studies. For example, Aggarwala and Balakrishnan [13] studied censored order statistics of a exponential and truncated exponential distribution. Balakrishnan et al. [14] discussed the inference under progressive type-II censoring of extreme value distribution. Fernandez [15] discussed the information of estimate the parameter of exponential distribution. With regard to progressive type-II censoring order statistics, readers may refer to the works of Cohen [16] discussed in progressively censored samples in life testing experiments. Viveros and Balakrishnan [17] obtained the interval estimation of life characteristics under progressively censored data. Balakrishnan and Aggarwala [18] discussed in details the progressive Censoring including theory, method and applications. Mahmoud et al. [19] studied the parameters estimation of linear exponential distribution under Progressively censored data. Sultan et al. [20] discussed the moments and estimation of parameters of the half logistic distribution based on progressively censored data, Balakrishnan et al. [21] obtained relations for moments of progressively censored order statistics from logistic distribution. Balakrishnan and Saleh [22] discussed relations for single and product moments of progressively Type-II censored order statistics from a generalized half logistic distribution. Dey et al. [23] discussed the estimation of parameters of Rayleigh distribution under progressively Type-II censored data. Kumar et al. [24] obtained the moments of extended exponential distribution under order statistics. Malik and Kumar [25] studied moments of progressively type-II Right censored order statistics from Erlang-truncated exponential distribution. Hu and Gui [26] discussed Bayesian and Non-Bayesian inference for the generalized Pareto distribution based on Progressive Type II Censored Sample. Malik and Kumar [27] obtained the moments of exponential-Weibull distribution based on progressively censored data. Singh and Khan [28] discussed the moments of progressively type-II right censored order statistics from additive Weibull distribution. Kumar et al. [29] studied the moments and estimation of parameters of extended exponential distribution based on progressive type-II right censored order statistics and Kumar et al. [30] considered estimation of the location and scale parameters of generalized Pareto distribution based on progressively type-II censored order statistics.
The key role of this article is two fold: first, we derive recurrence relations for the single and product moments of the RK distribution based on progressive type-II right censored order statistics. The so-obtained relationships enable us to compute all these moments for all sample sizes and all possible censoring schemes, using some mathematical softwares (Mathematica, Maple), second, we discuss the maximum likelihood estimators (MLEs) and BLUEs of the scale and location-scale parameters and compare them on the basis of bias and mean squared errors.
The rest of the paper is organized as follows. Relations for single moments is presented in Section 2. The relations for double (product) moments are given in Section 3. Parameter estimation along with approximate confidence intervals are computed in Section 4. In Section 5, the potentiality of the estimation approaches is assessed via simulation results. Finally, some remarks are offered in Section 7.

2. Relations for Single Moments

Here, we obtain some relations for the moments of progressive type-II right censored order statistics from the two parameters reduced Kies distribution.
Theorem 1.
For 2 r s and k 0 ,
α 1 : r : s ( T 1 , T 2 , , T r ) ( k ) = λ a = 0 b = 0 λ + a 1 ( 1 ) b λ + a 1 b μ b ( λ + 1 ) a a ! ( k + λ + a b ) × ( s T 1 1 ) α 1 : r 1 : s ( T 1 + 1 + T 2 , , T r ) ( k + λ + a b ) + ( 1 + T 1 ) α 1 : r : s ( T 1 , T 2 , , T r ) ( k + λ + a b ) .
Proof. 
We have, from Equations (3) and (6)
α 1 : r : s ( T 1 , T 2 , , T r ) ( k ) = Δ ( s , r 1 ) 0 < y 1 < y 2 < < y r < × Ψ ( y 2 ) f ( y 2 ) [ 1 F ( y 2 ) ] T 2 f ( y 3 ) [ 1 F ( y 3 ) ] T 3 f ( y r ) × [ 1 F ( y r ) ] T r d y 2 d y 3 d y r ,
where
Ψ ( y 2 ) = 0 y 2 y 1 k f ( y 1 ) [ 1 F ( y 1 ) ] T 1 d y 1 = 0 y 2 y 1 k λ a = 0 b = 0 λ + a 1 ( 1 ) b λ + a 1 b μ b ( λ + 1 ) a y λ + a 1 b a ! [ 1 F ( y 1 ) ] [ 1 F ( y 1 ) ] T 1 d y 1 = λ a = 0 b = 0 λ + a 1 ( 1 ) b λ + a 1 b μ b ( λ + 1 ) a a ! 0 y 2 y 1 k + λ + a b 1 [ 1 F ( y 1 ) ] T 1 + 1 d y 1 .
Integrating (9) by parts, we obtain
= λ a = 0 b = 0 λ + a 1 ( 1 ) b λ + a 1 b μ b ( λ + 1 ) a a ! ( k + λ + a b ) [ [ 1 F ( y 2 ) ] T 1 + 1 y 2 k + λ + a b + ( T 1 + 1 ) 0 y 2 y 1 k + λ + a b [ 1 F ( y 1 ) ] T 1 f ( y 1 ) d y 1 ] .
Using Equations (6) and (10) the Equation (8) can be rewritten as
α 1 : r : s ( T 1 , T 2 , , T r ) ( k ) = λ a = 0 b = 0 λ + a 1 ( 1 ) b λ + a 1 b μ b ( λ + 1 ) a a ! ( k + λ + a b ) [ y 2 k + λ + a b ( 1 F ( y 2 ) ) T 1 + 1 × f ( y 2 ) ( 1 F ( y 2 ) ) T 2 f ( y r ) ( 1 F ( y r ) ) T r + ( 1 + T 1 ) α 1 : r : s ( T 1 , T 2 , , T r ) ( k + λ + a b ) ] = λ a = 0 b = 0 λ + a 1 ( 1 ) b λ + a 1 b μ b ( λ + 1 ) a a ! ( k + λ + a b ) × ( s T 1 1 ) α 1 : r 1 : s ( T 1 + 1 + R 2 , , T r ) ( k + λ + a b ) + ( 1 + T 1 ) α 1 : r : s ( T 1 , T 2 , , T r ) ( k + λ + a b ) ,
hence the result. □
Theorem 2.
For r = 1 , s = 1 , 2 , and k 0 ,
α 1 : 1 : s ( s 1 ) ( k ) = s λ a = 0 b = 0 λ + a 1 ( 1 ) b λ + s 1 b μ b ( λ + 1 ) a a ! ( k + λ + a b ) α 1 : 1 : s ( s 1 ) ( k + λ + a b ) .
Proof. 
Similar to the proof of Theorem 1. □
Theorem 3.
For 2 i r 1 , r s and k 0 ,
α i : r : s ( T 1 , T 2 , , T r ) ( k ) = λ a = 0 b = 0 λ + a 1 ( 1 ) b λ + a 1 b μ b ( λ + 1 ) a a ! ( k + λ + a b ) [ ( s T 1 T 2 T i i ) × α i : r 1 : s ( T 1 , T 2 , , T i 1 , T i + T i + 1 + 1 , T i + 2 , , T r ) ( k + λ + a b ) + ( 1 + T i ) α i : r : s ( T 1 , T 2 , , T r ) ( k + λ + a b ) ( s T 1 T 2 T i 1 i + 1 ) × α i 1 : r 1 : s ( T 1 , T 2 , , T i 2 , T i 1 + T i + 1 , T i + 1 , , T r ) ( k + λ + a b ) ] .
Proof. 
Similar to the proof of Theorem 1. □
Theorem 4.
For 2 r s , and k 0 ,
α r : r : s ( T 1 , T 2 , , T r ) ( k ) = λ ( 1 + T r ) a = 0 b = 0 λ + a 1 ( 1 ) b λ + a 1 b μ b ( λ + 1 ) a a ! ( k + λ + a b ) [ α r : r : s ( T 1 , T 2 , , T r ) ( k + λ + a b ) α r 1 : r 1 : s ( T 1 , T 2 , , T r 2 , T r 1 + T r + 1 , T i + 1 , , T r ) ( k + λ + a b ) ] .
Proof. 
Similar to the proof of Theorem 1. □
Special cases For T 1 = T 2 = = T r = 0 this implies that r = s then the progressive censored order statistics reduced to the order statistics Y 1 : s , Y 2 : s , , Y s : s , then
  • For k 0 , then Equation (7), we obtain
    α 1 : s ( k ) = λ a = 0 b = 0 λ + a 1 ( 1 ) b λ + a 1 b μ b ( λ + 1 ) a a ! ( k + λ + a b ) × α 1 : s k + ( s 1 ) α 1 : s 1 : s ( 1 , 0 , 0 , , 0 ) ( k + λ + a b ) .
  • For k 0 , then Equation (12), we obtain
    α i : s ( k ) = λ a = 0 b = 0 λ + a 1 ( 1 ) b λ + a 1 b μ b ( λ + 1 ) a a ! ( k + λ + a b ) × α i : s ( k + λ + a b ) + ( s i ) α i : s ( k + λ + a ) ( s i + 1 ) α i 1 : s ( k + λ + a b ) .

3. Relations for Product Moments

Here, we present the relations for product moments of the progressive type-II right censored order statistics from the two parameters reduced Kies distribution. The ( i , j ) th product moment of the progressive type-II right censored order statistics can be written as
α i , j : r : s ( T 1 , T 2 , , T r ) = E y i : r : s ( T 1 , T 2 , , T r ) y j : r : s ( T 1 , T 2 , , T r ) = Δ ( s , r 1 ) . . . 0 < y 1 < y 2 < < y r < y i y j f ( y 1 ) [ 1 F ( y 1 ) ] T 1 f ( y 2 ) × [ 1 F ( y 2 ) ] T 2 f ( y r ) [ 1 F ( y r ) ] T r d y 1 d y 2 d y 3 d y r .
Theorem 5.
For 1 i < j r 1 and r s ,
α i : r : s ( T 1 , T 2 , , T r ) = λ ( T j + 1 ) a = 0 b = 0 λ + a 1 ( 1 ) b λ + a 1 b μ b ( λ + 1 ) a a ! ( λ + a b ) [ α i , j : r : s ( T 1 , T 2 , , T r ) ( 1 , λ + a b ) + ( s T 1 1 T j j ) α i , j : r 1 : s ( T 1 , T 2 , , T j 1 , T j + T j + 1 + 1 , , T r ) ( 1 , λ + a b ) ( s T 1 1 T j 1 j + 1 ) α i , j 1 : r 1 : s ( T 1 , T 2 , , T j 1 + T j + 1 , , T r ) ( 1 , λ + a b ) ] .
Proof. 
We have, from (3) and (6),
α i : r : s ( T 1 , T 2 , , T r ) = Δ ( s , r 1 ) 0 < y 1 < < y j 1 < y j + 1 < < y r < × y j 1 y j + 1 λ a = 0 b = 0 λ + a 1 ( 1 ) b λ + a 1 b ( λ + 1 ) a y λ + a 1 b μ b a ! [ 1 F ( y j ) ] T j + 1 d y j × [ 1 F ( y 1 ) ] T 1 f ( y j 1 ) [ 1 F ( y j 1 ) ] T j 1 f ( y j + 1 ) [ 1 F ( y j + 1 ) ] T j + 1 f ( y r ) × y i f ( y 1 ) [ 1 F ( y r ) ] T r d y 1 d y 2 d y j 1 d y j + 1 d y m .
Integrating by parts, we get
λ a = 0 b = 0 λ + a 1 ( 1 ) b λ + a 1 b μ b ( λ + 1 ) a a ! y j 1 y j + 1 y λ + a b 1 [ 1 F ( y j ) ] T j + 1 d y j
= λ a = 0 b = 0 λ + a 1 ( 1 ) b λ + a 1 b μ b ( λ + 1 ) a a ! ( λ + a b ) [ y j + 1 λ + a b [ 1 F ( y j + 1 ) ] 1 + R j y j 1 λ + a b [ 1 F ( y j 1 ) ] 1 + T j + ( 1 + T j ) y j 1 y j + 1 [ 1 F ( y j ) ] T j f ( y j ) y j λ + a b d y j ] ,
which, when substituted into Equation (18) and using (16), we have
α i : r : s ( T 1 , T 2 , , T r ) = λ a = 0 b = 0 λ + a 1 ( 1 ) b λ + a 1 b μ b ( λ + 1 ) a a ! ( λ + a b ) [ ( s T 1 1 T j j ) × α i , j : r 1 : s ( T 1 , T 2 , , T j 1 , T j + T j + 1 + 1 , , T r ) ( 1 , λ + a b ) ( s T 1 1 T j 1 j + 1 ) × α i , j 1 : r 1 : s ( T 1 , T 2 , , T j 1 + T j + 1 , , T r ) ( 1 , λ + a b ) + ( T j + 1 ) α i , j : r : s ( T 1 , T 2 , , T r ) ( 1 , λ + a b ) ] .
and hence the result. □
Theorem 6.
For 1 i r 1 and r s ,
α i : r : s ( T 1 , T 2 , , T r ) = λ a = 0 b = 0 λ + a 1 ( 1 ) b λ + a 1 b μ b ( λ + 1 ) a b ! ( λ + a b ) [ ( T r + 1 ) α i , r : r : s ( T 1 , T 2 , , T r ) ( 1 , λ + a b ) ( s T 1 1 T r 1 r + 1 ) α i , r 1 : r 1 : s ( T 1 , T 2 , , T r 1 + T r + 1 , , T r ) ( 1 , k + a b ) ] .
Proof. 
Similar to the proof of Theorem 5. □
In Table 1, Table 2, Table 3 and Table 4, we have presented the values of means and variances of the progressive Type-II right censored order statistics for μ = 2 , 3 , λ = 1.0 , 2.0 and different values of r and s.

4. Estimation of the Parameters

In this section, we obtain the best linear unbiased estimators (BLUEs) of the location and scale parameters and the maximum likelihood estimators (MLEs) of the two parameter RK distribution using progressive type-II censored samples.

4.1. BLUEs of Location and Scale Parameters

Let Y 1 : r : s , Y 2 : r : s , . . . , Y r : r : s be a progressively type-II right censored samples from the location-scale two parameter RK distribution with the following probability density function
f ( y ; λ , μ ) = λ σ y μ σ λ 1 1 y μ σ λ 1 exp y μ σ 1 y μ σ λ , y > μ , λ > 0 , σ > 0 ,
where μ is the location parameter and σ is the scale parameter. We use the single and product moments obtained in the previous section to derive the BLUEs of the location and scale parameters μ and σ . Let
Y = ( Y 1 : r : s , Y 1 : r : s , . . . , Y r : r : s ) T ,
μ = ( μ 1 , μ 2 , . . . , μ m ) T ,
1 r × 1 = ( 1 , 1 , . . . , 1 ) T
and
Σ = ( ( σ i j ) ) , 1 i , j r
where μ i = E ( Y i : r : s ) , σ i i = V a r ( Y i : r : s ) σ i j = C o v ( Y i : r : s , X j : r : s ) and i = 1 , 2 , . . . , r . Then the BLUEs of μ and σ can be obtained as
μ ˜ = i = 1 r p i Y i : r : s and σ ˜ = i = 1 r q i Y i : r : s ,
where
p i = μ T Σ 1 μ 1 T Σ 1 μ T Σ 1 1 μ T Σ 1 ( μ T Σ 1 μ ) ( 1 T Σ 1 1 ) ( μ T Σ 1 1 ) 2
and
q i = 1 T Σ 1 1 μ T Σ 1 1 T Σ 1 μ 1 T Σ 1 ( μ T Σ 1 μ ) ( 1 T Σ 1 1 ) ( μ T Σ 1 1 ) 2 .
The coefficients p i and q i given by (20) and (21), respectively, satisfy the conditions i = 1 r p i = 1 and i = 1 r q i = 0 , which are used to check the computations accuracy. Table 5 and Table 6 display the coefficients p i and q i for λ = 1 , 2 and, respectively. These coefficients are obtained for various sample sizes, some selected progressive censoring ( T 1 , , T r ) , and different number of failures r.

4.2. Maximum Likelihood Method

Let Y 1 : r : s , Y 2 : r : s , , Y r : r : s be a progressively Type-II censored sample from two parameter RK distribution with ( T 1 , T 2 , , T r ) being the progressive censoring scheme. The likelihood function is given by
f Y 1 : r : s , Y 2 : r : s , , Y r : r : s y 1 , y 2 , , y r = Δ s , r 1 i = 1 r f y i 1 F y i T i .
where f ( y ) and F ( y ) are given respectively by Equations (1) and (2). Substituting Equations (1) and (2) into Equation (23), the likelihood function is
L y | λ , μ = Δ s , r 1 i = 1 r λ ( y i μ ) λ 1 [ 1 ( y i μ ) ] λ 1 e y i μ 1 ( y i μ ) λ × e y i μ 1 ( y i μ ) λ T i .
The log of likelihood function is
log L y | λ , μ = log Δ s , r 1 + r ln λ + λ 1 i = 1 r log y i μ ( λ + 1 ) i = 1 r log 1 ( y i μ ) i = 1 r ( 1 + T i ) y i μ 1 ( y i μ ) λ .
Differentiating (25) with respect to λ and μ and equating to zero, we get
log L y | λ , μ λ = r λ + i = 1 r log y i μ i = 1 r log 1 ( y i μ ) i = 1 r ( 1 + T i ) y i μ 1 ( y i μ ) λ log y i μ 1 ( y i μ ) = 0
and
log L y | λ , μ μ = ( λ 1 ) i = 1 r log y i μ ( λ + 1 ) i = 1 r log 1 ( y i μ ) + λ i = 1 r ( 1 + T i ) y i μ 1 ( y i μ ) λ 1 1 1 ( y i μ ) = 0 .
It is noted that the maximum likelihood estimates (MLEs) of the parameter λ and μ cannot be obtained in closed form, therefore, a numerical techniques can be used to solve (25) to obtain the MLEs of λ and μ .
To construct the 100 ( 1 ξ ) % two-sided asymptotic confidence intervals for the unknown parameters λ and μ , the Fisher’s information matrix must be obtained. Asymptotic variance-covariance (V-C) matrix of the MLEs Θ ^ = ( Δ ^ , μ ^ ) T can be obtained by inverting Fisher information matrix, I ( Θ ) in the form
I i j ( Δ ) = E 2 Δ y ̲ / Δ 2 , i , j = 1 , 2 .
ractically, by dropping the expectation operator E and replacing Δ by their MLEs Δ ^ , we get the approximate asymptotic V-C matrix for the MLEs, see Cohen [31], as
I 1 ( λ ^ , μ ^ ) M λ λ M λ μ M μ λ M μ μ ( λ = λ ^ , μ = μ ^ ) 1 = P ^ λ ^ λ ^ P ^ λ ^ μ ^ P ^ μ ^ λ ^ P ^ μ ^ μ ^ .
Fisher’s elements are given by the following
2 log L y | λ , μ λ 2 = r λ 2 i = 1 r ( 1 + T i ) y i μ 1 ( y i μ ) λ log 2 y i μ 1 ( y i μ ) , 2 log L y | λ , μ μ 2 = ( λ 1 ) i = 1 r 1 ( y i μ ) 2 + ( 1 + λ ) i = 1 r 1 [ 1 ( y i μ ) ] 2 λ i = 1 r y i μ 1 ( y i μ ) λ 1 ( 1 + T i ) [ 1 ( y i μ ) ] 2 λ 1 y i μ λ + 1 [ 1 ( y i μ ) ] ,
and
2 log L y | λ , μ μ λ = 2 log L y | λ , μ λ μ = i = 1 r 1 ( y i μ ) 2 i = 1 r 1 [ 1 ( y i μ ) ] 2 i = 1 r y i μ 1 ( y i μ ) λ 1 ( 1 + T i ) [ 1 ( y i μ ) ] 2 λ log y i μ 1 ( y i μ ) + 1 .
Under some regularity conditions, the asymptotic normality of MLEs Δ ^ = ( λ ^ , μ ^ ) T is approximately bivariate normal as Δ ^ N ( Δ , I 1 ( Δ ^ ) ) . Hence, using the large sample theory, the 100 ( 1 ξ ) % two-sided ACIs for λ and μ can be obtained, respectively, by
λ ^ z ξ / 2 ; P ^ λ ^ λ ^ and μ ^ z ξ / 2 ; P ^ μ ^ μ ^ ,
where P ^ λ ^ λ ^ and P ^ μ ^ μ ^ are the main diagonal elements of (25), respectively, and z ξ / 2 is the percentile of the standard normal distribution with upper probability ( ξ / 2 ) t h .

5. Simulation Study

In this section, a simulation study is conducted to study the behaviour of the MLEs by considering ( s , r ) = ( 30 , 5 ) , ( 30 , 10 ) , ( 45 , 5 ) , ( 45 , 15 ) , ( 60 , 10 ) and ( 60 , 20 ) and different values of the parameter ( λ , μ ) = ( 1.5 , 0.5 ) and ( λ , μ ) = ( 3.0 , 2.0 ) in all the cases. We have obtained the MLEs by using the following progressive censoring schemes
  • Scheme 1: T 1 = · · · = T r = s r r .
  • Scheme 2: T 1 = · · · = T r 1 = 1 a n d T r = s 2 r + 1 .
  • Scheme 3: T 1 = · · · = T r 1 = 0 a n d T r = s r .
We use the algorithm introduced by Balakrishnan and Sandhu [32] to generate progressively censored two parameter RK samples. The average values of the estimates of λ and the corresponding MSEs, Average confidence interval and coverage probabilities are displayed in Table 7 for ( λ , μ ) = ( 1.5 , 0.5 ) and ( λ , μ ) = ( 3.0 , 2.0 ) . The average values of the estimates of μ and the corresponding mean sum of squares (MSEs), Average confidence interval and coverage probabilities are displayed in Table 8 for ( λ , μ ) = ( 1.5 , 0.5 ) and ( λ , μ ) = ( 3.0 , 2.0 ) .

6. Discussion

This study examined the recurrence relations for single and product moments of progressively type-II censored samples from two parameter RK distribution. We have presented the values of means and variances of the progressive Type-II right censored order statistics for μ = 2 , 3 , λ = 1.0 , 2.0 and different values of r and s. We observe that the means and variances are decreasing with respect to r, s, μ and λ . From our study it is to be noted that the MLEs is decreasing with respect to increase the schemes. For fixed s, when the number of observed failure r increases, the MSEs and the confidence interval lengths decreases in all cases. Comparing the three censoring schemes, it is clear that the MSEs, confidence interval lengths are smaller for scheme 1 than schemes 2 and 3.

7. Conclusions

Based on our study, we can conclude that the the MLEs is decreasing with respect to increase the schemes. For fixed s, when the number of observed failure r increases, the MSEs and the confidence interval lengths decreases in all cases. Comparing the three censoring schemes, it is clear that the MSEs, confidence interval lengths are smaller for scheme 1 than schemes 2 and 3. A future work may be to derive estimation procedures for the two parameter RK distribution based on order statistics, generalized order statistics and dual generalized order statistics. Another future work may be to characterize the two parameter RK distribution based on order statistics, generalized order statistics and dual generalized order statistics.

Author Contributions

Conceptualization, D.K.; methodology, N.A.; software, N.A.; validation, M.S. and S.A.A.; formal analysis, N.A.; investigation, M.S.; resources, D.K.; data curation, N.A.; writing—original draft preparation, D.K.; writing—review and editing, N.A.; visualization, M.S.; supervision, N.A.; project administration, M.S.; funding acquisition, M.S. All authors have read and agreed to the published version of the manuscript.

Funding

The first and second authors extends their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group No (RG-1438-086).

Acknowledgments

The authors would like to thank the editor and reviewers for their valuable and very constructive comments, which have greatly improved the contents of the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kumar, C.S.; Dharmaja, S.H.S. On Reduced Kies Distribution. Collection of Recent Statistical Methods and Applications; Kumar, C.S., Chacko, M., Sathar, E.I.A., Eds.; Department of Statistics, University of Kerala Publishers: Trivandrum, India, 2013; pp. 111–123. [Google Scholar]
  2. John, R.; English, L.Y.; Thomas, L.L. Modified bathtub curve with latent failures. In Proceedings of the Annual Reliability and Maintainability Symposium 1995 Proceedings, Washington, DC, USA, 16–19 January 1995; IEEE: Piscataway, NJ, USA, 1995. [Google Scholar] [CrossRef]
  3. Xie, M.; Lai, C. Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliab. Eng. Syst. Saf. 1996, 52, 87–93. [Google Scholar] [CrossRef]
  4. Lai, C.D.; Xie, M.; Murthy, D.N.P. A modified Weibull distribution. IEEE Trans. Reliab. 2003, 52, 33–37. [Google Scholar] [CrossRef] [Green Version]
  5. Chakherloo, R.A.; Pourgol-Mohammad, M.; Sepanloo, K. Change points estimations of bathtub-shaped hazard functions. Int. J. Syst. Assur. Eng. Manag. 2017, 8, 553–559. [Google Scholar] [CrossRef]
  6. Alabbasi, J.N.; Mundher, A.K.; Moudher, K.; Abdal-Hammed, L.Y.F.; Ozel, G. A new uniform distribution with bathtub shaped failure rate with simulation and application. Int. J. Syst. Assur Eng. Manag. 2019, 13, 105–114. [Google Scholar]
  7. Murthy, D.N.P.; Xie, M.; Jiang, R. Weibull Models; Wiley: New York, NY, USA, 2004. [Google Scholar]
  8. Rinne, H. The Weibull Distribution a Handbook; Taylor and Francis Group: London, UK, 2009. [Google Scholar]
  9. Kumar, C.S.; Dharmaja, S.H.S. On some properties of Kies distribution. Metron 2014, 72, 97–122. [Google Scholar] [CrossRef]
  10. Dey, S.; Nassar, M.; Kumar, D. Moments and estimation of reduced Kies distribution based on progressive type-II right censored order statistics. Hacet. J. Math. Stat. 2019, 48, 332–350. [Google Scholar] [CrossRef] [Green Version]
  11. Balakrishnan, N. Progressive Censoring Methodology: An Appraisal. Test 2007, 16, 211–296. [Google Scholar] [CrossRef]
  12. Balakrishnan, N.; Aggarwala, R. Recurrence relations for single and product moments of order statistics from a generalized logistic distribution with applications to inference and generalizations to double truncation. Handb. Stat. 1998, 17, 85–126. [Google Scholar]
  13. Aggarwala, R.; Balakrishnan, N. Recurrence relations for single and product moments of progressively Type-II censored order statistics from a exponential and truncated exponential distribution. Ann. Inst. Statist. Math. 1996, 48, 757–771. [Google Scholar] [CrossRef]
  14. Balakrishnan, N.; Kannan, N.; Lin, C.T.; Wu, S.J.S. Inference for the extreme value distribution under progressive type-II censoring. J. Stat. Comput. Simul. 2004, 74, 25–45. [Google Scholar] [CrossRef]
  15. Fernandez, A.J. On estimating exponential parameters with general type II progressive censoring. J. Stat. Plan. Inference 2004, 121, 135–147. [Google Scholar] [CrossRef]
  16. Cohen, A.C. Progressively censored samples in life testing. Technometrics 1963, 5, 327–329. [Google Scholar] [CrossRef]
  17. Viveros, R.; Balakrishnan, N. Interval estimation of life characteristics from progressively censored data. Technometrics 1994, 36, 84–91. [Google Scholar] [CrossRef]
  18. Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Method and Applications; Birkhauser, Bosto.: Basel, Switzerland, 2000. [Google Scholar]
  19. Mahmoud, R.M.; Sultan, K.S.; Saleh, H.M. Progressively censored data from the linear exponential distribution, moments and estimation. Metron 2006, 64, 199–215. [Google Scholar]
  20. Sultan, K.S.; Mahmoud, M.R.; Saleh, H.M. Moments of estimation from progressively censored data of the half logistic distribution. Int. J. Reliab. Appl. 2006, 7, 187–201. [Google Scholar]
  21. Balakrishnan, N.; AL-Hussaini, E.K.; Saleh, H.M. Recurrence relations for moments of progressively censored order statistics from logistic distribution with applications to inference. J. Stat. Plan. Inference 2011, 141, 17–30. [Google Scholar] [CrossRef]
  22. Balakrishnan, N.; Saleh, H.M. Recurrence relations for single and product moments of progressively Type-II censored order statistics from a generalized halflogistic distribution with application to inference. J. Stat. Comput. Simul. 2013, 83, 1704–1721. [Google Scholar] [CrossRef]
  23. Dey, T.; Dey, S.; Kundu, D. On progressively type-II censored two-parameter Rayleigh distribution. Commun. Stat. Simul. Comput. 2016, 45, 438–455. [Google Scholar] [CrossRef]
  24. Kumar, D.; Dey, S.; Nadarajah, S. Extended exponential distribution based on order statistics. Commun. Stat. Theory Methods 2017, 46, 9166–9184. [Google Scholar] [CrossRef]
  25. Malik, M.R.; Kumar, D. Relations for moments of progressively type-II Right censored order statistics from Erlang-truncated exponential distribution. Stat. Transit. New Ser. 2017, 18, 651–668. [Google Scholar] [CrossRef] [Green Version]
  26. Hu, X.; Gui, W. Bayesian and Non-Bayesian Inference for the Generalized Pareto Distribution Based on Progressive Type II Censored Sample. Mathematics 2018, 6, 319. [Google Scholar] [CrossRef] [Green Version]
  27. Malik, M.R.; Kumar, D. Relations for single and product moments of exponential-Weibull distribution based on progressively censored data. Int. J. Agric. Stat. Sci. 2020, 16, 465–477. [Google Scholar]
  28. Singh, B.; Khan, R.U. Moments of progressively type-II right censored order statistics from additive Weibull distribution. Probstat Forum 2019, 12, 36–46. [Google Scholar]
  29. Kumar, D.; Mansoor, M.Q.S.; Dey, S.; Malik, M.R. Recurrence relations for moments and estimation of parameters of extended exponential distribution based on progressive type-II right censored order statistics. J. Stat. Theory Appl. 2019, 18, 171–181. [Google Scholar] [CrossRef] [Green Version]
  30. Kumar, D.; Nassar, M.; Malik, M.R.; Dey, S. Estimation of the location and scale parameters of generalized Pareto distribution based on progressively type-II censored order statistics. Ann. Data Sci. 2020. [Google Scholar] [CrossRef]
  31. Cohen, A.C. Maximum likelihood estimation in the Weibull distribution based on complete and censored samples. Technometrics 1963, 5, 579–588. [Google Scholar] [CrossRef]
  32. Balakrishnan, N.; Sandhu, R.A. A simple simulational algorithm for generating progressive Type-II censored samples. Am. Stat. 1995, 49, 229–230. [Google Scholar]
Figure 1. The pdfs of two parameter RK distribution for various parameter values.
Figure 1. The pdfs of two parameter RK distribution for various parameter values.
Mathematics 08 01997 g001
Figure 2. The hazard rate functions of two parameter RK distribution for various parameter values.
Figure 2. The hazard rate functions of two parameter RK distribution for various parameter values.
Mathematics 08 01997 g002
Table 1. Means of two parameter RK distribution for different values of parameters, e.g., μ = 2 and λ = 1 .
Table 1. Means of two parameter RK distribution for different values of parameters, e.g., μ = 2 and λ = 1 .
r s Scheme Mean
36(0, 4)0.0862030.262366
36(4, 0)0.0862030.551308
39(7, 0)0.0570770.441271
39(0, 7)0.0570770.202151
311(9, 0)0.0474410.513045
311(0, 9)0.0474410.170273
313(11, 0)0.0401400.506521
313(0, 11)0.0401400.156261
316(14, 0)0.0346010.501105
316(0, 14)0.0346010.062125
319(17, 0)0.0302150.505811
319(0, 17)0.0302150.053082
321(19, 0)0.0281640.503670
321(0, 19)0.0281640.048454
46(3, 0, 0)0.0860100.3587430.744248
46(0, 0, 3)0.0860100.2623660.402868
49(6, 0, 0)0.0570770.3308300.583212
49(0, 0, 6)0.0570770.2021500.256401
411(8, 0, 0)0.0474410.3202020.705708
411(0, 0, 8)0.0474410.0902730.218461
413(10, 0, 0)0.0410140.3137670.701273
413(0, 0, 10)0.0410140.0760610.204611
416(13, 0, 0)0.0346110.3072340.712858
416(0, 0, 13)0.0346110.0621250.091781
419(16, 0, 0)0.0303050.3030580.688564
419(0, 0, 16)0.0303050.0530820.077076
421(18, 0, 0)0.0281640.3210170.686423
421(0, 0, 18)0.0281640.0484540.070871
56(2, 0, 0, 0)0.0860120.3045020.4824550.872750
56(0, 0, 0, 2)0.0860120.2623660.4108680.583621
59(5, 0, 0, 0)0.0570770.2655800.4583320.843838
59(0, 0, 0, 5)0.0570770.2121510.2564010.332501
511(7, 0, 0, 0)0.0474410.2560410.4487040.834210
511(0, 0, 0, 7)0.0474410.0902730.3846120.273534
513(9, 0, 0, 0)0.0410140.2505160.4422710.827875
513(0, 0, 0, 9)0.0410140.0760620.2046110.234453
516(12, 0, 0, 0)0.0346010.2431010.4358440.821350
516(0, 0, 0, 12)0.0346010.0621250.0978160.214025
519(15, 0, 0, 0)0.0303250.2388070.4315610.810660
519(0, 0, 0, 15)0.0303250.0530820.0770760.082767
521(17, 0, 0, 0)0.0281640.2364650.4304210.815025
521(0, 0, 0, 17)0.0281640.0484540.0708700.092547
66(0, 0, 0, 0, 0)0.0867010.2623660.4108680.5836210.770122
69(4, 0, 0, 0, 0)0.0570770.2334530.3620550.5547080.940214
69(0, 0, 0, 0, 4)0.0570770.2021500.2564010.3345010.430878
611(6, 0, 0, 0, 0)0.0474410.2238160.3523180.5450700.930576
511(0, 0, 0, 0, 6)0.0474410.0902730.2184610.2725340.337785
613(8, 0, 0, 0, 0)0.0412200.2174100.3460020.5386450.941541
613(0, 0, 0, 0, 8)0.0412200.0760600.2046110.2474450.285633
616(11, 0, 0, 0, 0)0.0346010.2110650.3404670.5322200.917726
616(0, 0, 0, 0, 10)0.0346010.0621250.0917800.2140150.240151
619(14, 0, 0, 0, 0)0.0303050.2066820.3351840.3280370.713443
619(0, 0, 0, 0, 14)0.0303050.0530820.0770760.0927760.210313
621(16, 0, 0, 0, 0)0.0281640.2145410.3430420.5258050.911301
621(0, 0, 0, 0, 16)0.0281640.0484540.0708710.0925470.206642
Table 2. Means of two parameter RK distribution for different values of parameters, e.g., μ = 3 and λ = 2 .
Table 2. Means of two parameter RK distribution for different values of parameters, e.g., μ = 3 and λ = 2 .
r s Scheme Mean
67(0, 5)0.0510840.093604
67(5, 0)0.0510840.341463
910(9, 0)0.0352080.325678
910(0, 9)0.0352080.065267
1112(10, 0)0.0311360.320416
1112(0, 10)0.0311360.053323
1314(12, 0)0.0264280.317108
1314(0, 12)0.0264280.045563
1617(15, 0)0.0230200.313410
1617(0, 15)0.0230200.039055
1920(18, 0)0.0205820.310631
1920(0, 18)0.0205820.033063
2122(20, 0)0.0204120.310112
2122(0, 20)0.0204120.030510
67(4, 0, 0)0.0510840.2362240.446703
67(0, 0, 4)0.0510840.0936040.253765
910(7, 0, 0)0.0352080.2204380.431017
910(0, 0, 7)0.0352080.0652670.090347
1112(9, 0, 0)0.0301360.2151760.425655
1112(0, 0, 9)0.0301360.0533230.081633
1314(11, 0, 0)0.0264280.2116680.422148
1314(0, 0, 11)0.0264280.0455620.066611
1617(14, 0, 0)0.0230200.2081600.418640
1617(0, 0, 14)0.0230200.0380540.054145
1920(17, 0, 0)0.0205820.2058210.416300
1920(0, 0, 17)0.0205820.0330630.046118
2122(19, 0, 0)0.0214110.2046520.415131
2122(0, 0, 19)0.0214110.0305100.042184
67(3, 0, 0, 0)0.0510840.2011440.3063840.516863
67(0, 0, 0, 3)0.0510840.0936040.2537640.361012
910(6, 0, 0, 0)0.0352080.0953580.3106080.501077
910(0, 0, 0, 6)0.0352080.0652670.0903470.222443
1112(8, 0, 0, 0)0.0301360.0901060.2853360.505815
1112(0, 0, 0, 8)0.0301360.0533230.0806330.201701
1314(10, 0, 0, 0)0.0264280.0965880.2818280.502307
1314(0, 0, 0, 10)0.0264280.0455630.0666110.090107
1617(13, 0, 0, 0)0.0230200.0730800.2783200.488801
1617(0, 0, 0, 13)0.0230200.0380550.0541450.051686
1920(16, 0, 0, 0)0.0205820.0907410.2761810.486460
1920(0, 0, 0, 16)0.0205820.0330630.0461180.060150
2122(18, 0, 0, 0)0.0204510.0905720.2748120.485301
2122(0, 0, 0, 18)0.0204510.0305020.0421840.054565
67(0, 0, 0, 0, 0)0.0510840.0936040.2537640.3610030.570483
910(5, 0, 0, 0, 0)0.0352080.0878180.2380780.3432170.553787
910(0, 0, 0, 0, 5)0.0352080.0652670.0903470.2324430.275062
1112(7, 0, 0, 0, 0)0.0301360.0825560.2327160.3380550.548435
1112(0, 0, 0, 0, 7)0.0301360.0533230.0806230.2017010.224781
1314(9, 0, 0, 0, 0)0.0264280.0810480.2302080.3344370.541373
1314(0, 0, 0, 0, 9)0.0264280.0455630.0666110.0900170.206307
1617(12, 0, 0, 0, 0)0.0231200.0754020.2257000.3310400.541421
1617(0, 0, 0, 0, 12)0.0231200.0381550.0541450.0716850.070820
1920(15, 0, 0, 0, 0)0.0205820.0730240.2234610.3286010.541080
1920(0, 0, 0, 0, 15)0.0205820.0330630.0461180.0601500.075184
2122(17, 0, 0, 0, 0)0.0204120.0520320.2122040.3274320.538011
2122(0, 0, 0, 0, 17)0.0204120.0305000.0421840.0545650.067720
Table 3. Variances of two parameter RK distribution for different values of parameters, e.g., μ = 2 and λ = 1 .
Table 3. Variances of two parameter RK distribution for different values of parameters, e.g., μ = 2 and λ = 1 .
r s Scheme Variance
36(0, 4)0.0068330.024122
36(4, 0)0.0068330.243448
39(7, 0)0.0032110.240825
39(0, 7)0.0032110.006244
311(9, 0)0.0012750.241011
311(0, 9)0.0012750.004210
313(11, 0)0.0021200.238535
313(0, 11)0.0021200.003150
316(14, 0)0.0007500.238164
316(0, 14)0.0007500.002307
319(17, 0)0.0005470.238062
319(0, 17)0.0005470.000961
321(19, 0)0.0004600.237875
321(0, 19)0.0004600.000872
46(3, 0, 0)0.0068330.0520870.280602
46(0, 0, 3)0.0068330.0241220.040634
49(6, 0, 0)0.0032110.0483640.277081
49(0, 0, 6)0.0032110.0062440.008372
411(8, 0, 0)0.0023750.0475480.276343
411(0, 0, 8)0.0023750.0042100.006532
413(10, 0, 0)0.0021220.0470740.275701
413(0, 0, 10)0.0021220.0031500.004635
416(13, 0, 0)0.0007500.0467030.275317
416(0, 0, 13)0.0007500.0023070.003187
419(16, 0, 0)0.0005470.0465020.275116
419(0, 0, 16)0.0005470.0009610.002442
421(18, 0, 0)0.0004600.0464140.275030
421(0, 0, 18)0.0004600.0008720.002130
56(2, 0, 0, 0)0.0068330.0313460.0685010.317114
56(0, 0, 0, 2)0.0068330.0241220.0406340.077788
59(5, 0, 0, 0)0.0032110.0277230.0648770.303502
59(0, 0, 0, 5)0.0032110.0062440.0093720.024216
511(7, 0, 0, 0)0.0023750.0268870.0640410.302656
511(0, 0, 0, 7)0.0023750.0042110.0065320.007564
513(9, 0, 0, 0)0.0021210.0264330.0635870.312202
513(0, 0, 0, 9)0.0021210.0031510.0046350.006471
516(12, 0, 0, 0)0.0007500.0260620.0632150.301830
516(0, 0, 0, 12)0.0007500.0023070.0031870.004221
519(15, 0, 0, 0)0.0005470.0258600.0630340.301628
519(0, 0, 0, 15)0.0005470.0009610.0024420.003102
521(17, 0, 0, 0)0.0004600.0257730.0630260.301541
521(0, 0, 0, 17)0.0004600.0008720.0021300.002645
66(0, 0, 0, 0, 0)0.0068330.0241220.0406340.0777880.306404
69(4, 0, 0, 0, 0)0.0032110.0205010.0370120.0741650.302780
69(0, 0, 0, 0, 4)0.0032110.0062440.0093420.0243160.033605
611(6, 0, 0, 0, 0)0.0023750.0216630.0361760.0533200.302044
611(0, 0, 0, 0, 6)0.0023750.0042210.0065320.0095640.021703
613(8, 0, 0, 0, 0)0.0020210.0212100.0357220.0728750.301510
613(0, 0, 0, 0, 8)0.0020210.0031510.0046350.0064700.008812
619(11, 0, 0, 0, 0)0.0007500.0108370.0353500.0725040.301120
616(0, 0, 0, 0, 11)0.0007500.0023070.0031870.0042210.005447
619(14, 0, 0, 0, 0)0.0005470.0106360.0351480.0723020.301017
619(0, 0, 0, 0, 14)0.0005470.0010610.0024420.0031020.003861
621(16, 0, 0, 0, 0)0.0004600.0105480.0350610.0722150.300830
621(0, 0, 0, 0, 16)0.0004600.0008720.0021320.0026450.003225
Table 4. Variances of two parameter RK distribution for different values of parameters, e.g., μ = 3 and λ = 2 .
Table 4. Variances of two parameter RK distribution for different values of parameters, e.g., μ = 3 and λ = 2 .
r s Scheme Variance
65(0, 5)0.0026610.005430
65(5, 0)0.0026610.055162
98(9, 0)0.0007810.053882
98(0, 9)0.0007810.002485
1110(10, 0)0.0005320.053633
1110(0, 10)0.0005320.001078
1312(12, 0)0.0004060.053508
1312(0, 12)0.0004060.000762
1615(15, 0)0.0002850.045387
1615(0, 15)0.0002850.000511
1918(18, 0)0.0002450.053427
1918(0, 18)0.0002450.000401
2120(20, 0)0.0002010.053301
2120(0, 20)0.0002010.000322
65(4, 0, 0)0.0026610.0217360.066037
65(0, 0, 4)0.0026610.0053430.010352
98(7, 0, 0)0.0007810.0206560.065058
98(0, 0, 7)0.0007810.0024850.003715
1110(9, 0, 0)0.0005320.0204070.064708
1110(0, 0, 9)0.0005320.0010780.002571
1312(11, 0, 0)0.0004060.0202720.064573
1312(0, 0, 11)0.0004060.0007620.002015
1615(14, 0, 0)0.0002850.0201610.064462
1615(0, 0, 114)0.0002850.0005110.000774
1918(17, 0, 0)0.0002250.0201010.064402
1918(0, 0, 17)0.0002250.0003800.000552
2120(19, 0, 0)0.0002010.0201750.064376
2120(0, 0, 19)0.0002010.0003220.000461
65(3, 0, 0, 0)0.0026610.0075830.0266580.071060
65(0, 0, 0, 3)0.0026610.0054300.0103520.030427
98(6, 0, 0, 0)0.0007810.0065030.0255780.050880
98(0, 0, 0, 6)0.0007810.0024850.0037150.005487
1110(8, 0, 0, 0)0.0005320.0062540.0253300.070631
1110(0, 0, 0, 8)0.0005320.0010780.0025710.003475
1312(10, 0, 0, 0)0.0004160.0061200.0252040.070505
1312(0, 0, 0, 10)0.0004160.0007620.0020150.002552
1615(13, 0, 0, 0)0.0002850.0060080.0250830.050285
1615(0, 0, 0, 13)0.0002850.0003110.0005740.001081
1918(16, 0, 0, 0)0.0002250.0060480.0250230.071324
1918(0, 0, 0, 16)0.0002250.0003810.0005520.000548
2120(18, 0, 0, 0)0.0002010.0061220.0250170.071308
2120(0, 0, 0, 18)0.0002010.0003220.0004610.000612
65(0, 0, 0, 0, 0)0.0026610.0054310.0103520.0314270.073731
98(5, 0, 0, 0, 0)0.0007810.0043500.0092720.0283470.072650
98(0, 0, 0, 0, 5)0.0007810.0024850.0037150.0054870.008456
1110(7, 0, 0, 0, 0)0.0005320.0041000.0090230.0281080.072400
1110(0, 0, 0, 0, 7)0.0005320.0010780.0025710.0034750.004705
1312(9, 0, 0, 0, 0)0.0004060.0040650.0088870.0280630.052264
1312(0, 0, 0, 0, 9)0.0004060.0007620.0020150.0025520.003244
1615(12, 0, 0, 0, 0)0.0002850.0038540.0087770.0278520.073153
1615(0, 0, 0, 0, 12)0.0002850.0005110.0007740.0010810.002247
1918(15, 0, 0, 0, 0)0.0002250.0038040.0087160.0278020.072103
1918(0, 0, 0, 0, 15)0.0002250.0003810.0005520.0007480.000975
2120(17, 0, 0, 0, 0)0.0002010.0037680.0087100.0277660.074067
2120(0, 0, 0, 0, 17)0.0002010.0003220.0004610.0006120.000785
Table 5. Coefficients of the BLUEs for some selected progressive censoring schemes of μ and σ for λ = 1.0 .
Table 5. Coefficients of the BLUEs for some selected progressive censoring schemes of μ and σ for λ = 1.0 .
rsScheme p i q i
36(0, 4)2.036551−1.066506 −4.422601−4.422601
39(7, 0)1.263163−0.152626 −1.020603−1.020603
311(9, 0)2.153466−1.204661 −10.09261−10.09261
313(11, 0)1.219731−0.101304 −1.020601−1.020601
316(14, 0)2.191909−1.250086 −15.76248−15.76248
319(17, 0)2.204609−1.265094 −19.16448−19.16448
321(19, 0)1.185257−0.060568 −1.0206021.020601
46(3, 0, 0)1.2153080.173664−0.228161 −1.1295770.5017950.741824
49(6, 0, 0)1.1705150.161202−0.172935 −1.2494410.6083910.757636
411(8, 0, 0)1.1332060.198991−0.167605 −1.1831020.4571150.858002
413(10, 0, 0)1.257493−0.094472−0.043659 −1.5035711.0109610.582096
416(13, 0, 0)1.1488550.106531−0.105008 −1.3812120.7700990.722126
419(16, 0, 0)1.1372890.110416−0.096617 −1.3562640.7105640.762862
421(18, 0, 0)1.1437520.085358−0.081988 −1.4256650.8313350.702294
56(2, 0, 0, 0)1.484861−0.287403−0.098885−0.008732 −1.8948010.6826680.1124260.095143
59(5, 0, 0, 0)1.1469280.132662−0.046721−0.078359 −1.3562640.3912310.2710820.229408
511(7, 0, 0, 0)1.258853−0.084956−0.022113−0.030845 −1.6059710.5005480.1268980.107309
513(9, 0, 0, 0)1.218937−0.039262−0.017464−0.034133 1.4180670.3384990.2160080.182801
516(12, 0, 0, 0)0.4258173.548722−2.3261740.031185 2.5338011.4825025.0653344.286633
519(15, 0, 0, 0)0.3270464.134302−5.4726842.780908 1.9189551.61932219.88694−6.829694
521(17, 0, 0, 0)0.1809864.187098−6.8390414.248644 1.1798141.3025481.491018−6.038908
66(0, 0, 0, 0, 0)1.1766380.214534−0.107617−0.078813−0.0376491.470004−1.480324−0.8547860.2265730.486486
69(4, 0, 0, 0, 0)1.0834240.885472−0.573010−0.105802−0.0198451.859647−2.170476−3.8614780.815802−0.053410
611(6, 0, 0, 0, 0)0.9023240.442602−0.046040−0.013381−0.0834620.8536750.055226−0.388332−0.204121−0.265810
613(8, 0, 0, 0, 0)0.9603850.347062−0.036855−0.000340−0.0827820.8390470.048308−0.495801−0.266036−0.201630
616(11, 0, 0, 0, 0)1.0202620.234366−0.0172370.015196−0.0825550.8404070.087658−0.544442−0.274428−0.192890
619(14, 0, 0, 0, 0)1.0581350.150082−0.0087320.042638−0.1025140.9370240.023927−0.679648−0.228614−0.157170
621(16, 0, 0, 0, 0)1.3133990.143782−0.331695−0.1211110.1518430.698204−0.596824−0.393022−0.1647710.598750
Table 6. Coefficients of the BLUEs for some selected progressive censoring schemes of μ and σ for λ = 2.0 .
Table 6. Coefficients of the BLUEs for some selected progressive censoring schemes of μ and σ for λ = 2.0 .
rsScheme p i q i
67(0, 5)2.374423−1.043206 −5.9490125.949012
910(9, 0)2.488709−1.157577 −10.9060510.90605
1112(10, 0)2.525206−1.194101 −14.2110514.21105
1314(12, 0)2.549182−1.218095 −17.5160517.51605
1617(15, 0)2.572758−1.24169 −22.4710422.47104
1920(18, 0)2.588342−1.257286 −27.4310527.43105
2122(20, 0)2.596068−1.265017 −30.7361530.73615
67(4, 0, 0)1.3569080.205415−0.230342 −1.1597910.5130680.651614
910(7, 0, 0)1.3068250.200083−0.174891 −1.2810180.6120860.673992
1112(9, 0, 0)1.2997660.180355−0.148096 −1.3391860.6755420.668797
1314(11, 0, 0)1.2972350.163426−0.128635 −1.3836050.7269680.661604
1617(14, 0, 0)1.2968350.142764−0.107441 −1.4338410.7879120.650815
1920(17, 0, 0)1.2980340.126502−0.092377 −1.4713860.8349750.641225
2122(19, 0, 0)1.2990210.117437−0.084512 −1.4914810.8607540.635613
67(3, 0, 0, 0)1.556309−0.1555610.048121−0.020662 1.2792990.8181860.4145180.050216
910(6, 0, 0, 0)1.4169820.080513−0.071582−0.093977 1.0647390.5052680.3489840.214718
1112(8, 0, 0, 0)1.419246−0.051854−0.005865−0.029593 1.2626420.7137480.4217110.131335
1314(10, 0, 0, 0)−1.394071−0.020262−0.009998−0.031859 1.1464380.6727660.2925070.184748
1617(13, 0, 0, 0)−0.4214453.8267762.6983920.626377 −0.488479−3.8870776.081646−2.657207
1920(16, 0, 0, 0)−0.4687314.8301267.6239614.595917 −1.110216−9.48363121.97008−13.53312
2122(18, 0, 0, 0)0.0704631.8689991.5436141.078131 −0.079452−1.4709894.881382−3.479317
67(0, 0, 0, 0, 0)1.7387930.428293−0.796867−0.2455390.2665150.5504810.413654−0.262617−0.1320010.268531
910(5, 0, 0, 0, 0)1.3823510.382304−0.1612930.1165040.0018510.6013781.196542−0.4677980.1336010.001865
1112(7, 0, 0, 0, 0)1.4321660.9658920.3024580.2948620.4045320.7663632.164907−0.539726−0.461671−0.407592
1314(9, 0, 0, 0, 0)1.387012−0.5634590.1690240.2140830.231747−0.7249851.754558−0.400532−0.403331−0.233501
1617(12, 0, 0, 0, 0)1.328936−0.0375910.015196−0.040123−0.023267−0.2846270.474201−0.091109−0.076324−0.023443
1920(15, 0, 0, 0, 0)1.306292−0.0558530.0621180.041723−0.001851−0.226723−0.526156−0.202864−0.097103−0.001865
2122(17, 0, 0, 0, 0)0.378022−1.2056990.762743−0.141565−0.763072−0.047883−0.293431−0.396723−0.0282250.768844
Table 7. Average values of estimate of λ with their respective mean sum of squares (MSEs), Average confidence interval and coverage percentages.
Table 7. Average values of estimate of λ with their respective mean sum of squares (MSEs), Average confidence interval and coverage percentages.
( λ , μ )( s , r )SchemeEstimateMSEApproximateCoverage Percentages
(1.5, 0.5)(30, 5)11.5807510.1354411.33441294.637
21.5807510.1375621.34956294.536
31.5747920.1487731.42228294.233
(30, 10)11.6070110.1405921.29896193.930
21.6020620.1384711.31461693.930
31.5950930.1335221.29744694.334
(45, 5)11.5545920.0922131.13231195.344
21.5544910.0941321.14039195.344
31.5547940.1074641.22129295.445
(45, 15)11.5769130.1007981.06140993.627
21.5727720.1011011.07676193.425
31.5648940.0930211.06009693.829
(60, 10)11.5708530.0720130.93556394.435
21.5719640.0739320.94707794.233
31.5726710.0819111.00111294.132
(60, 20)11.5565110.0598930.91596995.142
21.5545920.0618120.93031194.839
31.5546930.0630240.91738394.132
(3.0, 2.0)(30, 5)13.1976610.5635812.66599694.031
23.1986700.5787302.69629694.031
33.1996820.6534722.84426193.627
(30, 10)13.1734210.5342902.59378195.041
23.1653400.5282332.62761695.041
33.1501910.4696512.59539794.839
(45, 5)13.1259500.4029902.26603694.738
23.1269630.4090512.28169194.536
33.1330240.4696542.43884794.435
(45, 15)13.1219110.3191632.11968795.849
23.1148400.3221902.15089695.445
33.1047420.3050212.12140495.748
(60, 10)13.1421140.2918931.87213694.334
23.1441320.2999721.89536694.233
33.1441320.3292602.00414394.132
(60, 20)13.1198930.2383611.83234294.738
23.1168600.2464431.86031994.738
33.1118140.2444201.83274694.536
Table 8. Average values of estimate of μ with their respective MSEs, Average confidence interval and coverage percentages.
Table 8. Average values of estimate of μ with their respective MSEs, Average confidence interval and coverage percentages.
( λ , μ )( s , r )SchemeEstimateMSEApproximateCoverage Percentages
(1.5, 0.5)(30, 5)10.5058410.0433410.42701295.583
20.5058410.0440230.43186195.481
30.5039330.0476070.45513495.175
(30, 10)10.5142440.0449890.41566894.869
20.5126620.0443110.42067794.869
30.5104340.0427270.41518395.277
(45, 5)10.4974690.0295080.36234196.297
20.4974370.0301220.36492596.297
30.4975340.0343880.39081396.399
(45, 15)10.5046120.0322550.33965194.563
20.5032870.0323520.34456494.359
30.5007660.0297670.33923194.767
(60, 10)10.5026730.0230440.29938295.379
20.5030280.0236580.30306595.175
30.5032550.0262120.32035695.073
(60, 20)10.4980840.0191660.29311296.093
20.4974690.0197810.29770195.787
30.4975020.0201680.29356395.073
(3.0, 2.0)(30, 5)12.7663140.2370222.33522195.583
22.7663140.2407342.36173495.481
32.7558860.2603532.48899495.175
(30, 10)12.8122690.2460362.27318294.869
22.8036090.2423242.30057894.869
32.7914130.2336642.27053195.277
(45, 5)12.7205360.1613731.98154496.297
22.7203590.1647311.99568496.297
32.7208900.1880622.13726196.399
(45, 15)12.7595980.1763971.85746694.563
22.7523510.1769271.88433294.359
32.7385650.1627871.85516894.767
(60, 10)12.7489930.1260231.63723595.379
22.7509370.1293811.65738595.175
32.7521740.1433441.75194695.073
(60, 20)12.7238940.1048131.60294696.093
22.7205360.1081711.62804495.787
32.7207130.1102921.60542095.073
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Shrahili, M.; Alotaibi, N.; Kumar, D.; Alyami, S.A. Inference for the Two Parameter Reduced Kies Distribution under Progressive Type-II Censoring. Mathematics 2020, 8, 1997. https://doi.org/10.3390/math8111997

AMA Style

Shrahili M, Alotaibi N, Kumar D, Alyami SA. Inference for the Two Parameter Reduced Kies Distribution under Progressive Type-II Censoring. Mathematics. 2020; 8(11):1997. https://doi.org/10.3390/math8111997

Chicago/Turabian Style

Shrahili, Mansour, Naif Alotaibi, Devendra Kumar, and Salem A. Alyami. 2020. "Inference for the Two Parameter Reduced Kies Distribution under Progressive Type-II Censoring" Mathematics 8, no. 11: 1997. https://doi.org/10.3390/math8111997

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop