Local Limit Theorem for the Multiple Power Series Distributions
Abstract
:1. Introduction
2. Main Result
2.1. Some Notations
2.2. Multiple Power Series Distributions
3. Tauberian Lemma
4. Proof of Theorem 1
5. On Some Previous Results
Funding
Acknowledgments
Conflicts of Interest
References
- Noack, A. A class of random variables with discrete distributions. Ann. Math. Statist. 1950, 21, 127–132. [Google Scholar] [CrossRef]
- Johnson, N.L.; Kotz, S.; Kemp, A.W. Univariate Discrete Distributions, 2nd ed.; Wiley Series in Probability and Statistics; John Wiley and Sons: New York, NY, USA, 1992. [Google Scholar]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Discrete Multivariate Distributions; Wiley Series in Probability and Statistics; Wiley: New York, NY, USA, 1997; Volume xxii, 299p. [Google Scholar]
- Kolchin, V.F. A certain Class of Limit Theorems for Conditional Distributions. In Selected Translations in Mathematical Statistics and Probability; American Mathematical Society: Providence, RI, USA, 1973; Volume 11, pp. 185–197. [Google Scholar]
- Kolchin, V.F. Random Mappings; Translations Series in Mathematics and Engineering; Optimization Software, Inc., Publications Division: New York, NY, USA, 1986. [Google Scholar]
- Kolchin, V.F. Random Graphs, Encyclopedia Math. Appl. 53; Cambridge Univ. Press: Cambridge, UK, 1999. [Google Scholar]
- Timashev, A.N. Random Components in Generalized Allocation Scheme; Akademiya: Moscow, Russia, 2017. [Google Scholar]
- Timashev, A.N. Limit theorems for power-series distributions with finite radius of convergence. Theory Probab. Appl. 2018, 63, 45–56. [Google Scholar] [CrossRef]
- Pavlov, Y.L. Random Forests; VSP: Utrecht, The Netherlands, 2000. [Google Scholar]
- Chuprunov, A.N.; Fazekas, I. An analogue of the generalised allocation scheme: Limit theorems for the number of cells containing a given number of particles. Discrete Math. Appl. 2012, 22, 101–122. [Google Scholar] [CrossRef]
- Chuprunov, A.N.G.; Alsaied, M. Alkhuzani, On maximal quantity of particles of one color in analogs of multicolor urn schemes. Russ. Math. (Iz. VUZ) 2017, 61, 83–88. [Google Scholar] [CrossRef]
- Pavlov, Y.L. Conditional configuration graphs with discrete power-law distribution of vertex degrees. Sb. Math. 2018, 209, 258–275. [Google Scholar] [CrossRef]
- Pavlov, Y.L. On the connectedness of configuration graphs. Diskr. Mat. 2019, 31, 114–122. [Google Scholar]
- Pavlov, Y.L. On the asymptotics of the cluster coefficient of a configuration graph with an unknown distribution of vertex degrees. Inform. Appl. 2019, 13, 9–13. [Google Scholar]
- Pavlov, Y.L.; Cheplyukova, I.A. On the asymptotics of degree structure of configuration graphs with bounded number of edges. Discret. Math. Appl. 2019, 29, 219–232. [Google Scholar] [CrossRef]
- Pavlov, Y.L.; Khvorostyanskaya, E.V. On the limit distributions of the degrees of vertices in configuration graphs with a bounded number of edges. Sb. Math. 2016, 207, 400–417. [Google Scholar] [CrossRef]
- Leri, M.M.; Pavlov, Y.L. On the stability of configuration graphs in a random environment. Inform. Appl. 2018, 12, 2–10. [Google Scholar]
- Bingham, N.H.; Goldie, C.M.; Teugels, J. Regular Variation; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Seneta, E. Regularly Varying Functions; Springer-Verlag: Berlin/Heidelberg, Germany; New York, NY, USA, 1976. [Google Scholar]
- Yakymiv, A.L. On the multiple power series distribution regularly varying at the boundary point. Discret. Math. Appl. 2019, 29, 409–421. [Google Scholar] [CrossRef]
- Yakymiv, A.L. Some Properties of Regularly Varying Functions and Series in the Orthant, Probability-Analytical models. In Methods and Applications, Springer Proceedings in Mathematics and Statistics; Shiryaev, A.N., Pavlov, I.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; in press. [Google Scholar]
- Yakymiv, A.L. Abelian theorem for the regularly varying measure and its density in orthant. Theory Probab. Appl. 2019, 64, 385–400. [Google Scholar] [CrossRef]
- Yakymiv, A.L. A Tauberian theorem for multiple power series. Sb. Math. 2016, 207, 286–313. [Google Scholar] [CrossRef]
- Yakymiv, A.L. Probabilistic Applications of Tauberian Theorems.-Modern Probability and Statistics; VSP: Leiden, The Netherlands; Boston, MA, USA, 2005; Volume viii, 225p. [Google Scholar]
- Karamata, J. Sur un mode croissanse régulière des fonctions. Mathematica 1930, 4, 38–53. [Google Scholar]
- Omey, E. Multivariate Regular Variation and Application in Probability Theory, Eclectica; EHSAL: Brussel, Belgium, 1989; Volume 74. [Google Scholar]
- Yakymiv, A.L. Multivariate Regular Variation in Probability Theory. J. Math. Sci. 2020, 246, 580–586. [Google Scholar] [CrossRef]
- Timashev, A.N. Power Series Distributions and Generalized Allocation Scheme; Akademiya: Moscow, Russia, 2016. [Google Scholar]
- Karamata, J. Über die Hardy–Littelwoodsche Umkehrungen des Abelschen Steitigkeitssatzes. Math. Z. 1930, 32, 319–320. [Google Scholar] [CrossRef]
- Karamata, J. Neuer Beweis und Verallgemeinerung einiger Tauberian-Sätze. Math. Z. 1931, 33, 294–299. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
L. Yakymiv, A. Local Limit Theorem for the Multiple Power Series Distributions. Mathematics 2020, 8, 2067. https://doi.org/10.3390/math8112067
L. Yakymiv A. Local Limit Theorem for the Multiple Power Series Distributions. Mathematics. 2020; 8(11):2067. https://doi.org/10.3390/math8112067
Chicago/Turabian StyleL. Yakymiv, Arsen. 2020. "Local Limit Theorem for the Multiple Power Series Distributions" Mathematics 8, no. 11: 2067. https://doi.org/10.3390/math8112067
APA StyleL. Yakymiv, A. (2020). Local Limit Theorem for the Multiple Power Series Distributions. Mathematics, 8(11), 2067. https://doi.org/10.3390/math8112067