A Family of Multiple-Root Finding Iterative Methods Based on Weight Functions
Abstract
:1. Introduction
2. Convergence Analysis of the Parametric Family
- Chebyshev ():
- Halley ():
- Super-Halley ():
- Osada ():
3. Dynamical Analysis of the Family
3.1. Preliminaries on Complex Dynamics
3.2. The Rational Function
- ,
- ,
- .
- When , we get
- If ,
- When , turns into
- If , the fixed point operator is
3.3. Asymptotic Behavior of Fixed and Critical Points
- Attracting if , that is, when (and superattracting when ).
- Neutral when , so .
- Repelling if , and then . □
- Attracting if .
- Neutral if .
- Repelling: when .
- Superattracting if , that is when .
4. Numerical Test
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amat, S.; Busquier, S.; Plaza, S. Chaotic dynamics of a third-order Newton-type method. J. Math. Anal. Appl. 2010, 366, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Chicharro, F.I.; Cordero, A.; Gutiérrez, J.M.; Torregrosa, J.R. Complex dynamics of derivative-free methods for nonlinear equations. Appl. Math. Comput. 2013, 219, 7023–7035. [Google Scholar] [CrossRef]
- Chicharro, F.I.; Cordero, A.; Garrido, N.; Torregrosa, J.R. Generating root-finder iterative methods of second order: Convergence and stability. Axioms 2019, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Chun, C.; Lee, M.Y.; Neta, B.; Dzunic, J. On optimal fourth-order iterative methods free from second derivative and their dynamics. Appl. Math. Comput. 2012, 218, 6427–6438. [Google Scholar] [CrossRef] [Green Version]
- Iliev, A.; Kyurkchiev, N. Nontrivial Methods in Numerical Analysis (Selected Topics in Numerical Analysis); Lambert Academy: Plovdiv, Bulgary, 2010. [Google Scholar]
- Salimi, M.; Behl, R. Sixteenth-order optimal iterative scheme based on inverse interpolatory rational function for nonlinear equations. Symmetry 2019, 11, 691. [Google Scholar] [CrossRef] [Green Version]
- Babajee, D.K.R.; Thukral, R. On a 4-point sixteenth-order King family of iterative methods for solving nonlinear equations. Int. J. Math. Math. Sci. 2012, 2012, 979245. [Google Scholar] [CrossRef]
- Sharma, J.R.; Guha, R.K.; Gupta, P. Improved King’s methods with optimal order of convergence based on rational approximations. Appl. Math. Lett. 2013, 26, 473–480. [Google Scholar] [CrossRef]
- Ignatova, N.; Kyurkchiev, N.; Iliev, A. Multipoint algorithms arising from optimal in the sense of Kung-Traub iterative procedures for numerical solution of nonlinear equations. Gen. Math. Notes 2011, 6, 45–79. [Google Scholar]
- Cordero, A.; Torregrosa, J.R. Chapter On the design of optimal iterative methods for solving nonlinear equations. In Advances in Iterative Methods for Nonlinear Equations; Springer: Cham, Switzerland, 2016; pp. 79–111. [Google Scholar]
- Petkovic, M.S.; Petkovic, L.D. Construction and efficiency of multipoint root-ratio methods for finding multiple zeros. J. Comput. Appl. Math. 2019, 351, 54–65. [Google Scholar] [CrossRef]
- Petkovic, I.; Neta, B. On an application of symbolic computation and computer graphics to root-finders: The case of multiple roots of unknown multiplicity. J. Comput. Appl. Math. 2016, 308, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Proinov, P.D.; Vasileva, M. Local and semilocal convergence of Nourein?s iterative method for finding all zeros of a polynomial simultaneously. Symmetry 2020, 12, 1801. [Google Scholar] [CrossRef]
- Rall, L. Convergence of Newton’s process to multiple solutions. Numer. Math. 1966, 9, 23–37. [Google Scholar] [CrossRef]
- Schröder, E. On infinitely many algorithms. Tech. Rep. 1992, 57, 92–121. [Google Scholar]
- Mora, M. Estabilidad de los métodos Iterativos Para la Aproximación de raíces múltiples de Ecuaciones no Lineales. Master’s Thesis, Universitat Politècnica de València, València, Spain, 2019. [Google Scholar]
- Behl, R.; Cordero, A.; Motsa, S.S.; Torregrosa, J.R. On developing fourth-order optimal families of methods for multiple roots and their dynamics. Appl. Math. Comput. 2015, 265, 520–532. [Google Scholar] [CrossRef] [Green Version]
- Geum, Y.H.; Kim, Y.I.; Neta, B. A family of optimal quartic-order multiple-zero finders with a weight function of the principal kth root of a derivative-to-derivative ratio and their basins of attraction. Math. Comput. Simul. 2017, 136, 1–21. [Google Scholar] [CrossRef]
- Geum, Y.H.; Kim, Y.I.; Neta, B. Constructing a family of optimal eighth-order modified Newton-type multiple-zero finders along with the dynamics behind their purely imaginary extraneous fixed points. J. Comput. Appl. Math. 2018, 333, 121–156. [Google Scholar] [CrossRef]
- Cordero, A.; Jaiswal, J.P.; Torregrosa, J.R. Stability analysis of fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Nonl. Sci. 2019, 4, 43–56. [Google Scholar]
- Akram, S.; Zafar, F.; Yasmin, N. An optimal eighth-order family of iterative methods for multiple roots. Mathematics 2019, 7, 672. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, P. Complex analytic dynamics on the Riemann sphere. Bull. AMS 1984, 11, 85–141. [Google Scholar] [CrossRef] [Green Version]
- Devaney, R.L. An Introduction to Chaotic Dynamical Systems; Addison-Wesley: Redwood, CA, USA, 1989. [Google Scholar]
- Schlag, W. A Course in Complex Analysis and Riemann Surfaces; American Mathematical Society: Providence, RI, USA, 2014. [Google Scholar]
- Gutiérrez, J.M.; Plaza, S.; Romero, N. Dynamics of a fifth-order iterative method. Int. J. Comput. Math. 2012, 89, 822–835. [Google Scholar] [CrossRef]
- Cordero, A.; Giménez-Palacios, I.; Torregrosa, J.R. Avoiding strange attractors in efficient parametric families of iterative methods for solving nonlinear problems. Appl. Numer. Math. 2019, 137, 1–18. [Google Scholar] [CrossRef]
- Amiri, A.; Cordero, A.; Darvishi, M.T.; Torregrosa, J.R. Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems. Appl. Math. Comput. 2018, 323, 43–57. [Google Scholar] [CrossRef]
- Chicharro, F.I.; Cordero, A.; Garrido, N.; Torregrosa, J.R. On the choice of the best members of the Kim family and the improvement of its convergence. Math. Meth. Appl. Sci. 2019, 43, 8051–8066. [Google Scholar] [CrossRef]
- Chicharro, F.I.; Cordero, A.; Torregrosa, J.R. Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 2007, 190, 686–698. [Google Scholar] [CrossRef]
Value of | <1 | >1 | =1 | =0 |
Asymptotic behavior | Attracting | Repelling | Neutral | Superattracting |
Method | # iter | ACOC | ||
---|---|---|---|---|
0 | 8 | |||
6 | 0 | |||
7 | ||||
Chebyshev | 7 | |||
SuperHalley | 5 | |||
3 | 5 | 0 | ||
5 | ||||
6 | ||||
Chebyshev | 5 | |||
SuperHalley | 4 |
Method | # iter | ACOC | ||
---|---|---|---|---|
6 | ||||
8 | ||||
8 | ||||
Chebyshev | 5 | |||
SuperHalley | 6 | |||
7 | 7 | |||
5 | ||||
6 | ||||
Chebyshev | 6 | |||
SuperHalley | 5 |
Method | # iter | ACOC | ||
---|---|---|---|---|
3 | 6 | |||
6 | 0 | |||
6 | 0 | |||
SuperHalley | 5 | 0 | ||
9 | 7 | 0 | ||
7 | ||||
7 | ||||
SuperHalley | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chicharro, F.I.; Contreras, R.A.; Garrido, N. A Family of Multiple-Root Finding Iterative Methods Based on Weight Functions. Mathematics 2020, 8, 2194. https://doi.org/10.3390/math8122194
Chicharro FI, Contreras RA, Garrido N. A Family of Multiple-Root Finding Iterative Methods Based on Weight Functions. Mathematics. 2020; 8(12):2194. https://doi.org/10.3390/math8122194
Chicago/Turabian StyleChicharro, Francisco I., Rafael A. Contreras, and Neus Garrido. 2020. "A Family of Multiple-Root Finding Iterative Methods Based on Weight Functions" Mathematics 8, no. 12: 2194. https://doi.org/10.3390/math8122194
APA StyleChicharro, F. I., Contreras, R. A., & Garrido, N. (2020). A Family of Multiple-Root Finding Iterative Methods Based on Weight Functions. Mathematics, 8(12), 2194. https://doi.org/10.3390/math8122194